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Abstract
We study optimal algorithmic disclosure in a lending market where a lender

uses a predictive algorithm to screen a borrower and maximize profit. The al-
gorithm, privately observed by the lender, uses borrower data as input, which
can be manipulated by the borrower. Full disclosure is suboptimal due to ex-
cessive “gaming the system,” while no disclosure is also suboptimal because the
lender’s ex-post efficient use of borrower data induces excessive ex-ante manip-
ulation. Optimal algorithmic disclosure deters manipulation and improves data
quality. Under the optimal policy, borrower data is used less intensively by the
lender, reducing manipulation incentives. Despite receiving additional infor-
mation about the predictive algorithm, the borrower’s posterior belief remains
significantly uncertain. Algorithmic disclosure can improve the lender’s payoff
even when she can commit to lending decisions or verify the borrower’s type at
a cost.
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1 Introduction

Predictive algorithms have been widely used to mitigate adverse selection in vari-
ous decision-making processes, including hiring, college admissions, and lending.1 In
these settings, decision makers use predictive models to establish relations between
observable personal data and unobserved variables that are relevant to their decision-
making problems. For example, employers score resumes to predict job performance,
schools use standardized test results to assess academic potential, and FinTech lenders
analyze alternative data to evaluate creditworthiness. In these cases, the specific rela-
tionship between the input (personal data) and the output (quality) is not transparent
to the public, leaving economic agents (such as job candidates, students, and bor-
rowers) with limited information about it. With the development of big data and
data processing technology, predictive algorithms have become more complex and
nonintuitive, involving variables that have no obvious relationships with each other,
and thus have become even more opaque. Although there is a growing call for al-
gorithmic transparency,2 a key argument justifying the opaque nature of predictive
algorithms is the risk of manipulation,3 or “gaming the system.” When economic
agents know more about the predictive model, they are more likely to change their
behavior strategically, which reduces the informativeness of the input data. Despite
the importance of this question, the effects of algorithmic transparency and opacity
on market outcomes are still underexplored in academic research. Although recent
regulations have started to consider this issue,4 the motivation typically stems from
behavioral concerns, such as privacy or fairness, and largely ignores the effects on
market efficiency. Furthermore, the limited understanding of the consequences of
algorithmic transparency creates uncertainty about future regulations,5 potentially

1See Bogen and Rieke (2018) for algorithmic hiring, Kizilcec and Lee (2020) for algorithmic
fairness in education, Bruckner (2018) and Di Maggio et al. (2021) for algorithmic lending.

2“...company using algorithmic decision-making must know what data is used in its model and
how that data is used to arrive at a decision and explain that to the consumer.”—Federal Trade
Commission; “Whenever personal data is subject to automated decision making, people have ....the
right to an explanation”— General Data Protection Regulation.

3Wang et al. (2020) discuss several examples about manipulation under algorithmic transparency.
4For example, the Digital Services Act (“DSA”), which takes effect on February 17, 2024, intro-

duces due diligence and transparency obligations regarding algorithmic decision-making by online
platforms. In the UK, the CDDO (Central Digital and Data Office) has launched an algorithmic
transparency standard for government departments and the public sector.

5For example, in June 2021, NCRC, Affirm, Lending Club, Oportun, PayPal Holdings Inc, Square
and Varo Bank asked the Consumer Financial Protection Bureau (CFPB) to provide guidance on
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adding another layer of inefficiency.
To better understand this question, this paper studies the optimal disclosure of

a predictive algorithm that maximizes the algorithm user’s objective in a FinTech
lending setting. There are two players in this model: a borrower (he) and a lender
(she), both of whom are risk-neutral. The borrower has a binary private type and
owns a project whose payoff increases with the type. The lender and borrower have
misaligned incentives regarding the financing decision. The lender wants to finance
the project only if its expected payoff exceeds a constant cost, while the borrower de-
sires financing regardless of the project’s payoff. Although the lender cannot directly
observe the borrower’s type, the borrower generates personal data with binary real-
izations (e.g., using iOS or Android, or social media presence), which is informative
about his type. A better-type borrower generates “better” data, while a worse-type
borrower generates “worse” data. This personal data is subject to an unobservable
manipulation problem. Specifically, the borrower can privately manipulate his data,
changing its realization to the other one by paying a manipulation cost c, which is
known only to the borrower. The lender only sees the final realization of the data,
which may have been manipulated.

The exact relationship between the borrower’s type and the project payoff is unob-
servable to the borrower but observable to the lender. For simplicity, we assume that
the expected project payoff is zero for a worse-type borrower and v for a better-type
borrower. The value v is known only to the lender, and intuitively, it influences the
worse-type borrower’s incentive to manipulate his data. In our model, v also repre-
sents the correlation between the project payoff and the borrower type. We refer to
this value v as the “variable importance” of the predictive model.6

The borrower cares about the probability of the project being financed, and the
lender finances the project only if the expected payoff exceeds a constant cost. The
lender’s evaluation of the expected payoff depends on two factors: the value of the
variable importance v and the probability that the borrower is of a better type. The
first factor, the variable importance v, is exogenous and is the lender’s private in-

how it will apply disparate impact rules to any systems that use artificial intelligence (AI), machine
learning (ML), algorithms, or alternative data to make lending decisions.

6In fact, we borrow the term “variable importance” from the machine learning literature. “In
machine learning, feature (variable) importance indicates how much each feature contributes to the
model prediction. Basically, it determines the degree of usefulness of a specific variable for a current
model and prediction.” (What Is Feature Importance in Machine Learning?, Baeldung).
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formation. The second factor depends on the borrower’s data manipulation; less
manipulation makes the data more informative about the borrower’s type. When
the lender discloses some information about the variable importance v to the bor-
rower, it influences the borrower’s assessment of the financing probability and his
data manipulation incentives, which in turn affects the lender’s payoff.

After the borrower receives some information about the variable importance v, a
lending market equilibrium emerges accordingly. This equilibrium includes the bor-
rower’s data manipulation strategy and the lender’s lending decision. A better-type
borrower will never manipulate his data, while a worse-type borrower will manipu-
late if his manipulation cost is below a certain cutoff. The lender will not lend to a
borrower with worse data, but will lend to one with better data if the variable im-
portance v exceeds an endogenous cutoff. Therefore, the lending market equilibrium
is defined by two cutoffs: a manipulation cost cutoff for the worse-type borrower’s
decision and an variable importance cutoff for the lender’s lending decision. We then
characterize the optimal disclosure of the variable importance v that maximizes the
lender’s payoff.

First, the lender receives zero payoff (the worst possible outcome) if she chooses
full disclosure, i.e., disclosing the exact value of variable importance v to the bor-
rower. This happens because, knowing the exact value of v, a worse-type borrower
manipulates his data in such a way that the lender always becomes indifferent be-
tween lending and not lending to a borrower with better data, resulting in a zero
payoff in equilibrium. This implies that full disclosure induces too much “gaming
the system”, and thus reduces model effectiveness. Second, if the lender chooses no
disclosure, i,.e., not disclosing any information about the variable importance v to the
borrower, she can achieve a positive payoff, demonstrating that no disclosure is better
than full disclosure. This aligns with conventional wisdom that keeping the predictive
model opaque can deter data manipulation and improve efficiency. However, we show
that no disclosure is still suboptimal. To understand this, consider the case when
the variable importance is just slightly above the equilibrium cutoff, and in this case,
the lender lends to the borrower if he has better data. Although lending in this case
is ex-post efficient , it marginally increases the ex-ante financing probability from
the borrower’s perspective. This slight increase in financing probability incentivizes
worse-type borrower to manipulate his data, reducing its informativeness. It turns
out that in this case, the payoff loss from reduced data informativeness outweighs the
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marginal gains from lending. This also implies that the borrower data is used too
often in the no disclosure equilibrium, because the lending decision depends on the
borrower data only when the true variable importance is higher than the equilibrium
cutoff.

We characterize the structure of the optimal disclosure policy, which features
partial disclosure. The optimal policy divides the support of the borrower’s prior
belief into disjoint groups and reveals the group to which the true variable importance
v belongs. Each revealed group leads to a different equilibrium in the lending market.
Regarding the structure of these groups, there exists a group-independent cutoff v∗

such that, regardless of which group is revealed, in equilibrium, the lender will lend
to the borrower if and only if the borrower has better data and the true variable
importance is above v∗. The lender will reject the borrower if he has worse data
or if the true variable importance is below v∗. Although different revealed groups
lead to different lending market equilibria, the effective lending cutoff remains v∗.
This occurs because, for each group (except for at most one), there is a gap in the
borrower’s posterior belief between the regions above and below the cutoff v∗.

The structure of the optimal policy reveals key intuitions. First, in the optimal
disclosure, regardless of which group is revealed, the lender will make the loan if
and only if the variable importance v is higher than the group-independent cutoff v∗.
Then unconditionally, the loan decision is monotone in variable importance which is
efficient. Second, minimizing manipulation by worse-type borrowers is crucial because
increased manipulation makes the data noisy, reducing the profitability of lending to
a borrower with better data. Under the optimal policy, regardless of which group
is revealed, there are always two regions in the borrower’s posterior belief about v:
one below v∗ and one above it, with a positive gap between these regions. This
gap maintains significant uncertainty in the borrower’s posterior belief even after the
lender’s disclosure, which helps mitigate manipulation behavior.

Borrower data is used less frequently under the optimal policy compared to both
full disclosure and no disclosure scenarios. The intuition is as follows: Under full
disclosure, the probability of using borrower data is highest because the borrower’s
manipulation incentive monotonically increases with variable importance. Although
the lender is less willing to use the data when variable importance is low, the borrower
manipulates less in this case, leading the lender to use the data even if the variable
importance is not very high. In the no disclosure case, this issue is mitigated because
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the borrower’s manipulation is independent of variable importance, deterring the use
of borrower data when variable importance is not high. The optimal policy reduces
data use further by varying the borrower’s manipulation among different groups. For
some groups, low equilibrium manipulation is sufficient to deter use when variable
importance is below the cutoff v∗. For other groups, high equilibrium manipulation
deters use even when variable importance is relatively high. Unconditionally, the
optimal policy deters the use of borrower data more effectively.

We also provide a closed-form characterization of the optimal policy by imposing
an assumption on the distribution of the borrower’s manipulation cost. The opti-
mal policy includes a discrete part, which induces an equilibrium with the lowest
manipulation level among all posterior equilibria, and a continuous part, where ma-
nipulation levels vary continuously. This simplifies the optimal disclosure problem
to a one-dimensional optimization problem, which can be solved by a differential
equation.

We then consider the implementation of the optimal policy in two contexts. The
first involves sharing training data to achieve algorithmic transparency. If the true
correlation between the borrower’s personal data and creditworthiness is below a
threshold, the lender shares a representative or full sample with the public (borrow-
ers). If it is above the threshold, the lender adds noise to the sample, making the
correlation appear lower, thus keeping the borrower uncertain about the true correla-
tion. The second example involves disclosing variable importance in machine learning
models. If the true variable importance is below a threshold, the lender discloses its
true value. If it is above the threshold, the lender understates the variable impor-
tance in a specific way, maintaining uncertainty in the borrowers’ belief about the
true variable importance.

Finally, I consider two extensions that explore the interaction between optimal
disclosure and other methods of deterring manipulation. The first extension examines
the case when the lender can also commit to lending decisions. In this extension, the
lender can disclose information to the borrower after committing to a specific lending
decision. We show that, under certain conditions, algorithmic disclosure can still
improve the lender’s payoff even after the lender commits to a lending decision. This
result highlights the importance and robustness of information disclosure in deterring
manipulation in our setting.

The second extension considers the costly verification of borrower type. In prac-
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tice, lenders can verify borrower types through manual reviews, interviews, and fraud
detection techniques. In this extension, the lender can verify the borrower’s true type
at a cost. We explore how costly verification interacts with algorithmic disclosure
under the optimal policy. It turns out that in the optimal joint design, these two
methods act as substitutes. The lender first reveals whether the true variable impor-
tance is above a threshold. If it is, the lender will randomly verify the borrower’s type
and will not disclose additional information. If it is below the threshold, costly ver-
ification is not used, and additional information about the true variable importance
is disclosed similarly to the baseline model. This result confirms the importance
of algorithmic disclosure in deterring manipulation even when costly verification is
available.

The rest of this paper is organized as follows. In this section, we continue to discuss
related literature. Section 2 provides a simple model to highlight the intuition, and
Section 3 introduces the main model. In Section 4, we discuss the properties of the
optimal disclosure policy. Section 5 studies two extensions, and Section 6 concludes.

Related Literature

This paper contributes to three main strands of literature. First, there is an emerg-
ing but rapidly expanding body of work on the impact and regulation of algorithmic
decision-making, with most existing research focusing on behavior concerns like fair-
ness, bias, and discrimination (e.g. Bartlett et al. (2021), Milone (2019), Gillis and
Spiess (2019),Raghavan et al. (2020),Coston et al. (2021)). Our paper extends this
literature by exploring algorithmic disclosure from a perspective of market efficiency.
And we argue that even without these behavior concerns, algorithmic disclosure is
still optimal. A related study by Wang et al. (2020) also examines strategic data
manipulation but only compares full transparency and no disclosure policies. They
consider both the correlational and causal observables, and focus on the trade off be-
tween the investment on these two types of features. In contrast, our research focuses
on correlational features as inputs in predictive algorithms, and more importantly, we
consider flexible disclosure policies and gain deeper insights into the design of optimal
algorithmic disclosure. Additionally, Blattner et al. (2021) address the trade-off be-
tween model complexity and transparency and the role of algorithmic audits, which
is different from our focus. Björkegren et al. (2020) empirically demonstrate data
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manipulation when algorithms are transparent. There is also an expanding literature
on algorithmic explainability and explainable AI (e.g., Bhatt et al. (2020), Carvalho
et al. (2019), Lundberg and Lee (2017), Murdoch et al. (2019)), which primarily
addresses the “black box” nature of machine learning algorithms, while our paper
simplifies this nature to address an information design question in economics.

Second, our research contributes to the literature on Bayesian persuasion (Ka-
menica (2019) and Bergemann and Morris (2019) provide excellent surveys). We
model the information structure following Kamenica and Gentzkow (2011) and ad-
dress a persuasion problem with a continuous state, akin to Dworczak and Martini
(2019) and Perez-Richet and Skreta (2022). Generally, Bayesian persuasion problems
with continuous states are intractable, except in some special cases (e.g., Gentzkow
and Kamenica (2016), Dworczak and Martini (2019), Goldstein and Leitner (2018)).
Our theoretical results are derived using a novel “guess and verify” method. Bayesian
persuasion has many applications in economics and finance, including shareholder vot-
ing (Malenko et al. (2021)), security design (Azarmsa and Cong (2020); Szydlowski
(2021); Inostroza and Tsoy (2022)), bank stress test (Goldstein and Leitner (2018),
Goldstein and Leitner (2020) Inostroza (2019), Inostroza and Pavan (2021), Leitner
and Williams (2020)) and financial network (Huang (2020)). Our paper contributes
by addressing a new question (algorithmic disclosure) and providing a novel optimal
signal structure.

Lastly, this research is related to the literature on strategic data manipulation
(Frankel and Kartik (2019a), Frankel and Kartik (2019b); Ball (2019); Perez-Richet
and Skreta (2022)) and signaling models. Our approach to modeling private infor-
mation on the borrower side is similar to Frankel and Kartik (2019b). Ball (2019)
examines multi-dimensional features and shows that the optimal scoring rule un-
derweights some features to deter manipulation. These studies primarily focus on
improving efficiency through commitment to decision rules. In contrast, we address
an information design question, focusing on how commitment to information disclo-
sure can enhance efficiency. Perez-Richet and Skreta (2022) consider how test design
changes players’ manipulation incentives. The key difference between our papers is
that the decision maker has no private information in their model, while the decision
maker’s private information is the key part of our model.
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2 A Simple Model

To fix ideas, let’s first consider a simple model. There are two players: a lender (she)
and a borrower (he), both are risk neutral. The borrower has zero initial wealth, and
is protected by limited liability. He has a borrower-specific project which requires an
investment I = 3. The project generates a positive cash flow V = 10 if it succeeds,
and zero if it fails. The probability of success is a random variable. The lender has
all bargaining power and collects all payoffs from the project, while the borrower
receives a private benefit b = 1 if his project is successfully financed, irrespective of
its outcome.

The borrower can be good or bad, with probability µ = 0.3 and 1 − µ = 0.7,
respectively. The borrower type is his private information. A good (bad) borrower has
high (low) phone usage naturally, but a bad borrower can privately change the phone
usage from low to high by incurring a private cost c, which is uniformly distributed
between 0 and 1.7 A key assumption is that manipulating phone usage does not
change a borrower’s inherent type. In this market, the only data that the lender can
collect and use is the the borrower’s phone usage after potential manipulation.

A bad borrower always fails, so his probability of success is always zero. A good
borrower’s probability of success v is drawn from a uniform distribution U [0, 1], and
its realization is only observable to the lender. The lender can commit to disclosing
some information about v to the borrower before observing its realization, we examine
the equilibria of three types of disclosure policies in this section.

No Disclosure

Suppose the lender does not disclose any information about v, it can be shown that
there is a unique equilibrium which is characterized by two cutoffs cN and vN . A
bad borrower with manipulation cost lower than cN chooses to manipulate his phone
usage from low to high. The lender always rejects a borrower with low phone usage
and lends to a borrower with high phone usage if and only if v > vN .

The equilibrium condition for a bad borrower with manipulation cost cN is

Prob (v > vN) · b = cN ,

7Here we only allow a bad borrower to manipulate his phone usage for simplicity of exposition.
But the result does not change if we allow a good borrower to manipulate his phone usage from high
to low, because a good borrower will never manipulate this in equilibrium.
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Figure 1: Lender’s Payoff: No Disclosure

where Prob (v > vN) = 1 − vN is the probability of a borrower with high phone usage
receiving a loan. The lender’s equilibrium condition is

µvNV = (µ + (1 − µ) Prob (c ≤ cN)) I.

With our assumptions, the unique equilibrium values are vN = µI+(1−µ)Ib
µV +(1−µ)Ib

and cN =
b · µ(V −I)

µV +(1−µ)Ib
. Then the lender’s profit is

WN = µV
∫ 1

vN

(v − vN) dv.

We can show that in this equilibrium, vN = 0.59, cN = 0.41 and WN = 0.25.
Figure 1 characterizes the above equilibrium. The green triangle in Figure 1

represents the profit WN . In equilibrium, the loan is approved for a borrower with
high phone usage when v > 0.59. The green line on the horizontal axis represents the
support of posterior belief of v. In this no disclosure equilibrium, the posterior belief
is the same as the prior belief.

Full Transparency

If the lender perfectly reveals the realization of v to the borrower, we can show that
her profit equals zero, leading to the worst outcome. To see this, when vV < I,
lending is always inefficient, resulting in no financing and hence zero profit. For any
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vV ≥ I, in equilibrium, the lender must be indifferent between lending to a borrower
with high phone usage and not lending at all. Thus, the profit must also be zero for
any vV ≥ I.

A Binary Signal

Our question is, can the lender achieve a strictly higher outcome by disclosing some
information about v to the borrower? The answer is yes. The definition of disclosure
policy is formally introduced in Section 3.1, here we consider a simple case. Let’s
consider two sets A = [0, 0.54) ∪ (0.64, 0.91), and A∁ = [0.54, 0.64] ∪ [0.91, 1].

Consider the following disclosure policy: the lender reveals whether v is in the
region A or A∁. There are two possible equilibria depending on which region the
realization v belongs to. If v ∈ A, the posterior belief about v is a uniform distribution
on two disjoint intervals [0, 0.54) ∪ (0.64, 0.91), and we can show that the equilibrium
outcomes are v1 = 0.54, c1 = 0.34, and W1 = 0.19. Similarly, if v ∈ A∁, the posterior
belief about v is a uniform distribution on [0.54, 0.64] ∪ [0.91, 1], and the equilibrium
outcomes are v2 = 0.64, c2 = 0.48 and W2 = 0.09.

Figure 2 characterizes these two equilibria. The red trapezoid in the left panel
represents the profit in the equilibrium when observing v ∈ A, and the two red
intervals on the horizontal line represent the support of the posterior belief in this
equilibrium. In this case, the lender lends to the borrower with high phone usage
only when v ∈ (0.64, 0.91). Similarly, the right panel shows the profit on observing
v ∈ A∁. The total profit with this disclosure policy is

Ws = W1 + W2 = 0.19 + 0.09 = 0.28 > 0.25 = WN .

So the expected profit indeed improves.
Our analysis shows that the binary signal dominates both the no disclosure policy

and full transparency policy. The result that full transparency policy is dominated is
clear: when the exact information about the probability of success v is disclosed to
the borrower, a bad type borrower manipulates his phone usage such that the profit
from using the borrower data in lending decisions is always zero, and the lender is
indifferent between using and not using the borrower data. The inefficiency in the no
disclosure equilibrium arises due to the lender’s lack of commitment problem, that is,
the lender always makes the most efficient use of borrower data ex post in the lending
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Figure 2: Lender’s Payoff: binary signal

decision. To see this, suppose that the lender commits to lending to the borrower
with high phone usage if v > x. We can calculate the equilibrium profit as a function
of x, specifically, the lender’s profit is8

W (x) =
∫ 1

x
[µvV − (µ + (1 − µ) (1 − x)) I] dv.

Since vN satisfies µvNV − (µ + (1 − µ) (1 − vN)) I = 0, we can show that

dW (x)
dx

∣∣∣∣∣
x=vN

> 0.

The above result shows that the equilibrium cutoff vN is inefficiently low from an
ex ante perspective. Note that when v < vN , the borrower data is effectively not
used in the lender’s lending decision, because the borrower will be rejected no matter
what his data is. The borrower data will be used only when v ≥ vN , at which point a
borrower with high and low phone usage will receive different loan approval decisions.
So the probability that the borrower data is used in lending decisions, (1 − vN), is
inefficiently high in this no disclosure equilibrium. When the lender uses the borrower
data more often ex post in some states, a bad borrower is more likely to manipulate
his data ex ante, and the total financing cost will increase for all other states from

8The bad type borrower chooses to manipulate when c ≤ cx = b (1 − x) .
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the ex ante perspective. This cross-state externality makes no disclosure equilibrium
inefficient.

To mitigate the excess manipulation, the binary signal defers the lender’s use
of borrower data by differentiating the lending market equilibria. Unconditionally,
with the binary signal, borrower’s phone usage data is used when v > 0.64, while
it is v > 0.59 in the no disclosure equilibrium. So the data is used less frequently
under the binary signal. Intuitively, by differentiating the two equilibria, the “worse”
equilibrium (v ∈ A∁) effectively guarantees that the borrower data will not be used in
cases when it was indeed used in no disclosure equilibrium (when v ∈ (0.59, 0.64)), and
the “better” equilibrium (v ∈ A) has lower level of data manipulation and generates
more efficient outcome.

In the main model, I’ll consider a general space of disclosure policies. But this
binary signal has several notable properties that are still robust in the optimal dis-
closure policy in the general model. First, there exists a threshold (v∗ = 0.64), such
that unconditionally, the borrower data is used in lending decisions if and only if the
true state is above the threshold. This cutoff property always holds for any posterior
equilibria under any disclosure policy, and here we show it also holds unconditionally
in the optimal policy. Second, for any signal realization of information disclosure
(v ∈ A or v ∈ A∁), the support of posterior belief can always be separated by this
ex ante cutoff v∗. Third, the unconditional probability of using the borrower data in
lending decisions is lower than that in the no disclosure equilibrium, implying that
the borrower data is used less intensively under optimal disclosure. Lastly, the binary
signal induces two posterior equilibria, one with higher (v ∈ A∁) and the other with
lower (v ∈ A) data manipulation levels than the no disclosure equilibrium. All of
these properties still hold in the optimal disclosure policy in the general model.

3 The Main Model

3.1 Model Setup

Now let’s introduce the formal model. There are two players in this model: a deep
pocket lender (she) and a representative borrower (he), both are risk neutral. The bor-
rower has zero initial wealth but has access to an investment opportunity (a project)
that costs I > 0. The project payoff V is a random variable. We assume the lender
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has all the bargaining power and the borrower is protected by limited liability. If the
lender finances the borrower, she obtains all the profit, V − I, from the investment;
the borrower, on the other hand, gets private benefit b > 0 from undertaking the
project. If the lender does not lend to the borrower, then both players obtain their
outside options which are normalized to zero.

The borrower type X ∈ {0, 1} is private information. The probability that the
borrower type is X = 1 is denoted by µ, which is also the lender’s prior belief. The
project payoff for a borrower with type X is

V = X · v + ϵ, (1)

where ϵ is pure noise, independent of X, and satisfies E (ϵ) = 0 and Var (ϵ) < ∞.
The distributional information about ϵ is public information. Then it’s clear that
E (V |X) = X · v. The key feature of our model is that the value of v is drawn from a
distribution, and its realization is privately observed by the lender. For simplicity, we
assume the value v is drawn from a continuous distribution on [0, v̄] with a probability
(cumulative) distribution function g (·) (G (·)). Assume function g is continuous and
strictly positive on [0, v̄]. To focus on the interesting case, we assume that v̄ > I,
otherwise, the lender will never lend to the borrower. The borrower only knows the
distributional information g (and G) but not the realization. The equation (1) repre-
sents a predictive model, and the interpretation of the model parameter v may vary
depending on the context. For example, v can be the variable importance or feature
importance in machine learning models, or it can simply represent the correlation in a
statistical model.9 In practice, a FinTech lender might use long-term, historical, and
unmanipulated data, along with their proprietary machine learning model, to extract
the correlation between borrowers’ choices of phone operating system and the default
probability within the population. However, borrowers cannot observe this correla-
tion information. For the rest of this paper, we refer to v as the variable importance
to align with its interpretation in a machine learning setting.

Although the lender can’t observe the borrower type X directly, she has access to
some borrower data x, which is informative about the borrower type X. We assume
that the borrower data x also takes values in {0, 1}. For instance, the data x could be

9Note that in our setting, the correlation between the outcome variable V and the type X is
ρX,V = 1√

1+ Var(ϵ)
v2µ(1−µ)

, which is an increasing function of v.
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the operating system used by the borrower, or more generally, his digital footprint,
that is informative about the borrower’s type (credit quality).10 A borrower with
type X = 1 (X = 0) naturally generates data x = 1 (x = 0), however, the data x is
subject to the borrower’s manipulation. Specifically, a borrower can change x from 1
to 0, or vice versa, by incurring a private cost c. This manipulation does not alter the
borrower’s true type X. Therefore, if the data is not manipulated, x = X, the data
perfectly reveals the borrower’s type. If the data is manipulated, then x = 1−X. The
cost c is independent of all other random variables in the model, and is drawn from a
continuous distribution on (0, c̄] with a cumulative distribution function K (·). Only
the borrower observes its realization. For simplicity, assume K ′ (c) exists everywhere
and is continuous and strictly positive at any c ∈ [0, c̄].11

Assumption 1. µv̄ < [µ + (1 − µ) K (b)] I.

Assumption 1 implies that in any equilibrium, the lender will never lend to the
borrower with data x = 1 with 100% probability. If the lender indeed lends to the
borrower with data x = 1 for sure, the probability that the borrower has data x = 1
becomes [µ + (1 − µ) K (b)], and the expected cost of financing, [µ + (1 − µ) K (b)] I,
is higher than the maximum payoff from the project, µv̄, and thus lending is unprof-
itable for the lender. So this can not be an equilibrium with Assumption 1.

Disclosure About the Predictive Model

To maximize her expected profit, the lender can reveal some information about the
predictive model (1) to the borrower, which is represented by the parameter v in our
setting. Specifically, the lender commits to a policy that reveals information about v

before observing its true value, and the borrower makes data manipulation decision
10Berg et al. (2020) mention that “...simple, easily accessible variables from the digital footprint

proxy for income, character, and reputation and are highly valuable for default prediction. For
example, the difference in default rates between customers using iOS (Apple) and Android (e.g.,
Samsung) is equivalent to the difference in default rates between a median credit score and the 80th
percentile of the credit bureau score. ” A related example is that in 2019, Goldman Sachs issued a
new credit card, the “Apple Card,” which can only be applied for on an iOS device. In this case, they
effectively used the phone operating system as a screening variable in their credit card application.

11For example, in the case of the Apple Card, which can only be applied for on an iOS device,
applicants without such devices might strategically alter their behavior by purchasing a new iOS
device or borrowing one, based on their belief in the variable importance of operating system in
predicting their true credit quality. Such behavioral changes, while costly, make the operating
system data noisier and less effective in the predictive model.
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after observing the revealed information. To make the disclosure policy as flexible as
possible, we adopt the standard definition used in the information design literature.

Definition 3.1. A disclosure policy (S, σ̃) consists of a measurable space S and a
mapping σ̃ from the realization v ∈ [0, v̄] to a distribution over the signal space S:

σ̃ : [0, v̄] → ∆S.

Let s ∈ S, then (v, s) forms a joint distribution on [0, v̄] × S. Let the marginal
cumulative (probability) distribution function of s be F (f), and the conditional
cumulative (probability) distribution function of v|s be Πs (πs), then we must have

∫
s∈S

πsdF = g.

For simplicity, we use {F, πs} to represents the distribution of posteriors induced by
the signal, which is an element in ∆ (∆S).

The lender discloses a signal s following the disclosure policy, and then the bor-
rower updates his belief and chooses his manipulation strategy accordingly. As dis-
cussed in the literature, the main advantage of modeling information disclosure in this
way is the flexibility. Intuitively, the information structure defined in Definition 3.1
summarizes all possible ways of disclosing information to the borrower, and thus our
model also sheds light on the boundary of the pure information channel mitigating
strategic manipulation.

Later we will show that optimal disclosure policies can always be implemented
by a specific class of policies known as deterministic policies. In these policies, the
signal realization conditional on any state v is deterministic, and thus the disclosure
policy can be represented by a message function, see below for the formal definition
of a deterministic policy. For simplicity, let δx be the Dirac measure, which puts
probability 1 on the state x, and zero otherwise.

Definition 3.2. A disclosure policy (S, σ̃) is deterministic if for any v ∈ [0, v̄], the
signal realization is deterministic, i.e., there exists a measurable function σ : [0, v̄] →
S, such that

σ̃ = δσ(v).

We also call σ (v) the message function.
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Throughout this paper, when there is no confusion, we use (S, σ) to represent a
deterministic disclosure policy with signal space S and a message function σ.12

Timeline

All events occur in the following order:

1. The lender chooses a signal structure (S, σ̃); then v is randomly drawn from the
distribution g (v) and observed by the lender.

2. A signal realization s is generated based on (S, σ̃) , and disclosed to both players.

3. The borrower decides whether to manipulate his data x.

4. The lender decides whether to lend to the borrower or not based on the observed
data x and the true value of v.

5. All random variables are realized, and both players receive their payoffs.

3.2 The Market Equilibrium

We first investigate the market equilibrium after a signal s is revealed under a dis-
closure policy (S, σ̃). Let’s call this the subgame s. For a borrower with type X and
manipulation cost c, his decision, γs (X, c) ∈ [0, 1], is the probability of manipulating
his data x upon observing signal s. For the lender, her decision, αs (x, v) ∈ [0, 1],
is the probability of lending to the borrower based on the borrower data x (after
potential manipulation), the lender’s privately observed variable importance v, and
the public signal s.

The lender’s expected profit of lending to a borrower with data x = 1 is

U1 = µv
∫ c̄

0
[1 − γs (1, c)] dK (c)−

[
µ
∫ c̄

0
[1 − γs (1, c)] dK (c) + (1 − µ)

∫ c̄

0
γs (0, c) dK (c)

]
I,

(2)
12For example, the full transparency policy can be represented by a signal space S = [0, v̄] with

a message function σ (v) = v; and the no disclosure policy can be represented by a signal space
S = {0} with a message function σ (v) ≡ 0.
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and zero otherwise. Similarly, her expected profit of lending to a borrower with data
x = 0 is

U0 = µv
∫ c̄

0
γs (1, c) dK (c)−

[
µ
∫ c̄

0
γs (1, c) dK (c) + (1 − µ)

∫ c̄

0
[1 − γs (0, c)] dK (c)

]
I,

(3)
and zero otherwise. So the lender’s choice αs (x, v) solves the following problem:

max
α∈[0,1]

αUx (4)

for x = 0, 1. Then in the subgame s, the probability that the project owned by a
borrower with data x can be financed is

ds (x) =
∫ v̄

0
αsπsdv. (5)

For a borrower with type X, when he manipulates the data, his data x becomes
1 − X, then his profit is

ds (1 − X) b − c.

If he does not manipulate the data, his data x remains to be X, and his profit is

ds (X) b.

Then his decision γs (X, c) solves

max
γ∈[0,1]

(1 − γ) · ds (X) b + γ · (ds (1 − X) b − c) . (6)

We introduce a formal definition of the lending market equilibrium of subgame s

below.

Definition 3.3. An equilibrium of subgame s consists of the borrower’s manipulation
strategy γs (X, c) and the lender’s lending strategy αs (x, v), such that under the
posterior belief πs, the following two conditions are satisfied.

1. The lender’s strategy αs (x, v) solves (4).

2. The borrower’s strategy γs (X, c) solves (6), where ds (x) is defined in (5).

It turns out that the lending market equilibrium has a simple structure. First, in
the appendix, we show that γs (1, c) = 0, this is because a borrower with data x = 1
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is always perceived as being of better quality by the lender, so he has no incentive
to manipulate his data. This implies that only a borrower with type X = 0 will
possibly choose to manipulate his data, and thus the lender always rejects a borrower
with x = 0, leading to ds (0) ≡ 0. Therefore, we just need to focus on the borrower’s
strategy when his type is X = 0 and the lender’s strategy when she faces to a borrower
with data x = 1. In equilibrium, a borrower with type X = 0 decides to manipulate
his data only if his manipulation cost is low enough, i.e.,

c ≤ b · ds (1) = cs.

The lender lends to a borrower with data x = 1 only if the privately observed v is
high enough, i.e.,

µv − [µ + (1 − µ) K (cs)] · I ≥ 0 ⇐⇒ v ≥ vs = [µ + (1 − µ) K (cs)] · I

µ
. (7)

When v = vs, the lender is indifferent to lending or not. The equilibrium can be
summarized by these two cutoffs cs and vs. The following lemma characterizes the
lending market equilibrium for the subgame s.

Lemma 3.1. For any subgame s, if Πs (I) = 1, there is no financing in any equilib-
rium; if Πs (I) < 1, there exists a unique equilibrium with two cutoffs cs and vs, such
that

1. γs (1, c) ≡ 0, and γs (0, c) =


0 if c > cs

∈ [0, 1] if c = cs

1 if c < cs

.

2. αs (0, v) ≡ 0, and αs (1, v) =


1 if v > vs

∈ [0, 1] if v = vs

0 if v < vs

.

3. cs and vs are solved by the following equilibrium conditions

cs = b · ds (1) , (8)

Prob (v > vs| s) ≤ ds (1) ≤ Prob (v≥vs| s) , (9)
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and
vs = [µ + (1 − µ) K (cs)] · I

µ
, (10)

where Prob (·|s) is the probability function of the posterior belief about v under
the subgame s.

The lender’s expected profit in the subgame s is

Ws = µEs

[
(v − vs)+

]
= µ

∫ v̄

vs

(v − vs) πs (v) dv.

For the rest of the paper, we use (vs, cs) to represent the two equilibrium cutoffs
mentioned in the above lemma under a signal realization s. Since there is no financing
when Πs (I) = 1, without loss of generality, we choose cs = 0 and vs = 0 for this case.
By choosing a disclosure policy (S, σ̃), the distribution of the signal s (represented by
F (s) or f (s)) is uniquely pinned down. Under each realization s, the belief about v is
updated to πs, and the lender obtains the expected profit Ws characterized in Lemma
3.1. Then the lender’s expected profit is

∫
s WsdF (s), and thus her optimization

problem is
max
(S,σ̃)

∫
s
WsdF (s) .

For simplicity, it is standard in the literature to work with the distribution of pos-
teriors, {F (s) , πs},13 rather than directly with disclosure policies. Thus, we can
reformulate the lender’s problem in the following proposition.

Proposition 3.1. The lender solves the following equivalent problem:

max
S,{F,πs}

W = µ
∫

s∈S
E
[
(v − vs)+ |s

]
dF (s) (11)

s.t
∫

s∈S
πsdF (s) = g (v) , (12)

Prob (v > vs| s) ≤
K−1

(
µvs

I(1−µ) − µ
1−µ

)
b

≤ Prob (v ≥ vs| s) ∀s ∈ S. (13)

Here Prob (v| s) is the probability function associated with the posterior belief πs.

The last condition (13) solves the equilibrium cutoff vs under the posterior belief
πs. This problem is known as a Bayesian persuasion problem with continuous states,

13See the Online Appendix of Kamenica and Gentzkow (2011) for the discussion with continuous
states.
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which is in general not tractable except in some special cases (Gentzkow and Kamenica
(2016), Dworczak and Martini (2019)). Our model does not fit into any existing
tractable framework and is solved by a “guess and verify” approach. Before analyzing
the structures of the lender’s solution, we have the following observation that helps
simplify the problem.

Lemma 3.2. For any disclosure policy, if there exist two distinct signal realizations
s1 and s2 with equilibrium cutoffs vs1 = vs2, then combing these two signals together
will not change the market equilibrium.

Lemma 3.2 implies that we can (without loss of generality) focus on policies (S, σ̃),
such that for any two distinct signal realizations s1, s2 ∈ S, vs1 ̸= vs2 . Then we can
choose a signal space such that s ≡ vs for all s ∈ S. We will use this simplification
throughout the rest of this paper.

3.3 Suboptimality of No Disclosure

The key friction in our model is the adverse selection due to endogenous manipulation.
A borrower with type X = 0 chooses his manipulation strategy based on the updated
public belief on the distribution of v. For the optimal policy, a natural guess would
be that the lender should not disclose any information, and thus make the model as
opaque as possible. Denote the lending market equilibrium in this case as (vN , cN),
where N represents “no disclosure.” The lender’s payoff is

WN = µ
∫ v̄

vN

(v − vN) dG (v) .

We can show that in this case, the use of borrower data x is too frequent in lending
decisions, leading to excessive manipulation. This result arises from the lender’s lack
of commitment: she always makes the most efficient use of borrower data ex post,
which is ex ante inefficient. To see this, note that given the borrower’s manipulation,
the lender always lends to a borrower with data x = 1 if the lending is ex post positive
NPV, i.e., when v > vN , where vN satisfies

µvN − [µ + (1 − µ) K (cN)] · I = 0. (14)

Now, suppose the lender can commit to a slightly higher lending cutoff vN +δ (δ ≪ 1),
i.e., the lender lends to a borrower with data x = 1 only when the variable importance
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v ≥ vδ = vN + δ. Let her payoff in this case be Wδ. This leads us to the following
result.

Lemma 3.3. dWδ

dδ

∣∣∣
δ=0

> 0.

Lemma 3.3 implies that, in the no disclosure equilibrium, a commitment to re-
duced lending improves the lender’s payoff. Note that this commitment to reduced
lending corresponds to a less frequent use of borrower data in lending decisions.14

Similar results also show up in other economic settings where the information re-
ceivers commit to underweight some variables in decision rules to deter manipulation
and improve efficiency (Ball (2019)). To see the intuition, rewriting dWδ

dδ

∣∣∣
δ=0

,

dWδ

dδ

∣∣∣∣∣
δ=0

= − [µvN − (µ + (1 − µ) K (cN)) I] g (v)+
∫ v̄

vδ

(
− (1 − µ) Ig (v) dK (cδ)

dδ

∣∣∣∣∣
δ=0

)
dv.

(15)
The first term in (15) equals zero, reflecting the lender’s optimality condition as
specified in (14). However, the second term is positive because an increase in δ

decreases the equilibrium cutoff of manipulation, denoted as cδ. This highlights the
suboptimality of the no disclosure policy. Although the lending decision is always
positive NPV ex post, approving a borrower with data x = 1 incentivizes the borrower
to engage in ex ante manipulation. This manipulation exacerbates adverse selection,
thereby increasing the lending cost across all states, regardless of the realized variable
importance v.

In our paper, committing to lending decisions is not allowed,15 and only disclosure
about the variable important v is considered. We can show that the lender can
mitigate the manipulation and improve payoff by disclosing information about the
variable importance v. The following proposition confirms that no disclosure is indeed
suboptimal.

Proposition 3.2. There exists a disclosure policy (S, σ̃) with lender’s payoff W1,
such that W1 > WN .

14In our model, the lender rejects the borrower no matter what his data is if the variable impor-
tance v is below a certain cutoff, meaning the borrower data is essentially not used when rejecting.
However, approval depends on the borrower data x; if v exceeds the cutoff, the lender lends only if
the borrower has x = 1. Therefore, the lending decision depends on borrower data only when v is
above the cutoff. As a result, a higher cutoff means a lower probability that the lending decision
depends on borrower data, which effectively reduces the lender’s usage of borrower data.

15We consider an extension about this assumption in Section 5.1.
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vN vN + δ0 v̄

A1
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A3

Figure 3: Suboptimality of No Disclosure Policy

Proposition 3.2 challenges the conventional wisdom that making predictive models
more transparent will always hurt efficiency because of the “gaming the system” con-
cern. The key to Proposition 3.2 is to find a disclosure policy under which the lender
will use borrower data x less frequently in equilibrium, which will deter manipulation.

To gain intuitions on how it works, suppose the lender designs a deterministic
disclosure policy with three elements in the signal space S = {s1, s2, s3}, and the
message function is

σ (v) = s11A1 (v) + s21A2 (v) + s31A3 (v) ,

where A1, A2, and A3 are (unions of) intervals shown on Figure 3. The above dis-
closure policy effectively discloses which set of A1, A2, and A3 that the true state
belongs to. The boundaries of the intervals are chosen such that the following three
conditions are satisfied. First, the equilibrium of subgame s1 is the same as the no
disclosure equilibrium, i.e., (v1, c1) = (vN , cN) ; second, A2 = [vN , vN + δ] is a small
set, where δ ≪ 1; finally, the remaining regions is A3, i.e., A3 = [0, v̄] − A1 ∪ A2.

The equilibrium of subgame s1 is the same as the no disclosure equilibrium. The
signal s2 reveals that the true state is in the interval [vN , vN + δ]. In this subgame, the
lender’s payoff is less that µδ for any value of v, which is close to zero for any v ∈ A2

because δ is very small. Then the change in lender’s payoff is negligible in this region.
In the equilibrium of subgame s3, the probability of financing the borrower with data
x = 1 is lower than that in the no disclosure equilibrium (note that the borrower with
data x = 1 will be financed only if the true state v is in the right interval of A3), which
reduces the manipulation incentives and improves the outcome. Then the net effect on
lender’s payoff is positive. The example in Figure 3 shows that the lender can indeed
improve the profit by disclosing some information about the variable importance v.
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In the next section, we characterize general properties of optimal policies.
Another natural guess for the optimal disclosure policy is full transparency, i.e.,

disclosing the exact value of v to the borrower. We can show that full transparency
leads to the worst outcome, and thus it must be suboptimal.

Lemma 3.4. The lender’s payoff when making the variable importance v fully trans-
parent, WF , is zero.

Since the lender’s payoff must be nonnegative, Lemma 3.4 implies that disclosing
all the information about the true state of v leads to the worst payoff. The intuition
behind the result is straightforward: when the borrower knows the exact value of
the true state, in equilibrium, the data manipulation level is high enough such that
there is zero surplus from financing a borrower with data x = 1, and the lender gets
zero payoff when using borrower data x in lending. This result is consistent with the
common view that disclosing too much information about the predictive model will
hurt efficiency due to “gaming the system.”

Remark 3.1. Proposition 3.2 and Lemma 3.4 jointly imply that the optimal disclosure
policy must feature partial disclosure.

4 General Properties of Optimal Policies

Before analyzing the general properties of optimal policies, let’s first consider the
properties of the equilibrium in any subgame. First, Lemma 3.1 implies that for any
two signal realizations s1 and s2, we must have

cs1 ≶ cs2 ⇐⇒ vs1 ≶ vs2 .

When the manipulation cutoff cs is lower, the borrower is more likely to manipulate
his data, and the adverse selection is more severe when facing to a borrower with
data x = 1. In this case, the variable importance has to be higher for loan approval.
Consider an arbitrary signal s with posterior belief πs. Let

As = {v ∈ supp (πs) |αs (1, v) > 0} , (16)

and
Rs = {v ∈ supp (πs) |αs (1, v) = 0} . (17)
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As is the subset of the support of v|s, where the lender lends to a borrower with
data x = 1 with positive probability, while Rs is the subset where the lender lends
with zero probability. Let’s call As and Rs the acceptance region and rejection region,
respectively. Clearly, As and Rs are disjoint, and As ∪ Rs = supp (πs). The following
lemma shows that in any optimal policy, both As and Rs are non-empty sets.

Lemma 4.1. Suppose (S, σ̃) is an optimal policy, then for almost all s ∈ S, both As

and Rs are non-empty sets, and As = {v ∈ supp (πs) |αs (1, v) = 1}.

Since the lender’s action αs (x, v) is always increasing in v, for any subgame s, we
must have

sup Rs ≤ vs ≤ inf As,

showing that the acceptance region As and rejection region Rs are separated by
a signal-contingent cutoff vs for any signal s. This simple result stems from the
lender’s ex post optimality condition: it is always optimal for the lender to lend to a
borrower with data x = 1 if the variable importance is higher. The following theorem
demonstrates that this intuition also holds from an ex ante perspective under any
optimal policy.

Theorem 4.1. Suppose (S, σ̃) is an optimal policy, then there must exist a signal-
independent cutoff v∗, such that for almost all s ∈ S, we have

sup Rs ≤ v∗ ≤ inf As,

where As and Rs are acceptance region and rejection region defined above.

Theorem 4.1 provides a necessary condition that all optimal policies must satisfy.
From an ex ante perspective, the lender lends to a borrower with data x = 1 if and
only if the variable importance v is sufficiently high. While this condition has been
shown to hold under any subgame in previous analyses, Theorem 4.1 demonstrates
that it must also hold ex ante under any optimal disclosure policy. It also implies
that, in any optimal policy, for all signal realizations s, the following condition must
hold:

supp (πs) ∩ (min {vs, v∗} , max {vs, v∗}) = ∅.

This implies that, the posterior distribution of all signal realizations must contain a
“hole,” which separates the rejection region and the acceptance region.
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This special structure offers some insights into optimal policies. Optimal poli-
cies reveal information about the true state, but in the same time maintain signifi-
cant uncertainty, regardless of signal realizations. Intuitively, creating a gap between
the rejection and acceptance regions in posterior beliefs preserves uncertainty about
the variable importance in the borrower’s posterior belief, mitigating concerns about
“gaming the system.” The following proposition shows that the cutoff v∗ is actually
the maximum of (almost) all posterior lending cutoffs.

Proposition 4.1. Suppose (S, σ̃) is an optimal policy, then

v∗ ≥ vs

for almost all s ∈ S.

In Section 3.3, we discussed how the no disclosure equilibrium leads to excessive
lending and incentivizes borrower manipulation. Now we can see why this outcome
can be improved from Proposition 4.1. To see the intuition, suppose the policy induces
two signals, s1 and s2, with vs1 < vs2 ≤ v∗. The higher approval probability in s2

leads to more manipulation (cs2 > cs1). Consequently, the lender requires a higher
variable importance v in subgame s2 to approve loans (vs2 > vs1). This may shift
the approval region near the cutoff vN (e.g., [vN , vN + δ] for a small δ) to a rejection
region under subgame s2 if vs2 > vN , reducing the unconditional approval probability
compared to no disclosure. This results in a higher overall lending cutoff v∗ and less
manipulation. The following proposition confirms this result.

Proposition 4.2. Let (S, σ̃) be an optimal policy in Theorem 4.1, and vs be the
lending cutoff under signal realization s under this policy, and v∗ be the ex ante
lending cutoff. Let vN be the lending cutoff in the equilibrium with no disclosure.
Then

v∗ > vN > inf
s∈S

vs.

The result v∗ > vN suggests that borrower data is used less frequently under
optimal disclosure policies compared to the no disclosure equilibrium. Let cN be the
manipulation cutoff under the no disclosure equilibrium. Define cmax = sups∈S cs and
cmin = infs∈S cs. Proposition 4.2 also implies cmax > cN > cmin. This proposition
explains the differentiation across subgames. In the equilibrium with the highest
borrower manipulation level (cs → cmax), a high lending cutoff vs → v∗ is required
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for approval of a borrower with x = 1, deterring the use of borrower data x in this
subgame equilibrium. The cost is a high level of adverse selection, requiring the
lender to finance inefficient borrower with high probability. However, the benefit is
less adverse selection in other subgames (note that cmin < cN). Under the optimal
policy, the positive effect dominates.

Finally, we show that for any optimal disclosure policy, there exists a deterministic
policy that generates the same equilibria, as shown in the following lemma.

Lemma 4.2. For any optimal disclosure policy (S, σ̃), there must exist a deterministic
policy (S, σ) with the same signal space S, the same distribution of signals, and the
same posterior belief for any signal s ∈ S, such that the induced market equilibria are
identical under any signal s ∈ S in both disclosure policies.

Lemma 4.2 greatly simplifies our analysis and allows us to focus on the message
function σ defined in Definition 3.2 rather than the distribution function σ̃ in Defini-
tion 3.1. The next theorem presents the characterization of optimal policies.

Theorem 4.2. There exists a deterministic optimal policy (S, σ) such that:

1. σ (v) = vs for any v and s satisfying v ∈ supp (πs), meaning the message space
is chosen such that the message is the lender’s equilibrium lending cutoff under
any signal.

2. There exists a cutoff v∗ ∈ (0, v̄), such that:

(a) σ (v) is a weakly increasing function on [0, v∗].

(b) For any s ∈ S, both Rs and As are nonempty.

There are several implications from Theorem 4.2. First, as we discussed in Lemma
4.1, a borrower with data x = 1 is approved with positive probability in any subgame.
This means that manipulation exists in any subgame. This implication rules out some
disclosure policies. For example, if the lender chooses a policy that reveals whether v

is below the investment I or not, financing the borrower is always inefficient if v ≤ I

is revealed, regardless of the borrower’s type. Therefore, if v ≤ I is revealed, there
will be no loan approved and no manipulation. This disclosure policy is dominated
by no disclosure because the lender does not benefit from states where v ≤ I , but
the borrower will choose to manipulate more in states where v > I. In fact, Theorem
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4.2 shows that it is optimal to mix low states (where v is low) with high states (where
v is high) to preserve uncertainty about the variable importance v in all subgames.
Second, the message function σ is a weakly increasing function on [0, v∗]. This implies
that lower values of v in rejection regions correspond to equilibria with lower lending
cutoffs. This is intuitive because lower lending cutoffs indeed necessitate lower v

values in rejection regions.
To make more precise predictions about the optimal policy, we impose a distri-

butional assumption on the manipulation cost K (c). With this assumption, we can
derive optimal policies in closed form.

Assumption 2. cK (c) is a convex function of c on [0, c̄].

With this assumption, the message function σ in Theorem 4.2 has a simple struc-
ture.

Theorem 4.3. When Assumption 2 is satisfied, there exists a deterministic optimal
policy (S, σ), that has the following structure on [0, v∗]: there exists a cutoff va ∈
(0, v∗) such that

σ (v) =

va if v ∈ [0, va]

v if v ∈ (va, v∗]
.

Besides, σ (v) = vs for any v ∈ supp (πs).

Theorem 4.3 characterizes the message function for the region where the variable
importance v is lower than the lending cutoff v∗. In the region where v is higher than
v∗, the characterization can be quite flexible. In any equilibrium, the borrower only
cares about the probability that v exceeds v∗, not the specific value. Consequently,
any message function that keeps the probability of v being higher than v∗ consistent
with the equilibrium can be optimal. The following proposition provides an example
of optimal policy.

Proposition 4.3. When Assumption 2 is satisfied, there exists a deterministic op-
timal policy with message function σ (v). For v ≤ v∗, function σ (v) is defined in
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Theorem 4.3. For v > v∗, there exists vb ∈ (v∗, v̄), such that:

σ (v) =

va if v ∈ (v∗, vb]

γ (v) if v ∈ (vb, v̄]
.

Here γ : [vb, v̄] → [va, v∗] is a continuous, strictly increasing function satisfying the
following differential equation:

γ (v) =
[
1 + 1 − µ

µ
K

(
b · g (v)

γ′ (v) g (γ (v)) + g (v)

)]
I,

with boundary conditions γ (vb) = va,γ (v̄) = v∗, and g(vb)
γ′(vb)g(γa) = G(vb)−G(v∗)

G(va) .

Based on the above results, for any given v∗, we can solve for the message function
(including boundaries va and vb) using the conditions in Theorem 4.3 and Proposition
4.3. Thus, finding the optimal message function reduces to finding the optimal cutoff
v∗. The lender’s problem in Proposition 3.1 becomes a one-dimensional maximization
problem,

max
v∗

W,

where W is defined by (11) under a disclosure policy with signal space S = [va, v∗]
and message function σ. The value va and message function σ are solved by Theorem
4.3 and Proposition 4.3. Figure 4 presents a numerical example of an optimal policy.

With the optimal policy, under the discrete signal va, values of the variable im-
portance in [0, va] are pooled with an interval above v∗, (v∗, vb]. In this subgame, the
lending cutoff is va, which is the upper bound of the posterior belief’s support below
v∗. Beyond this discrete signal, the optimal policy differentiates other states more
precisely. Specifically, each state in (va, v∗] is pooled with an infinitesimal point in
(vb, v̄], and all states in (va, v∗] are separated from each other. Additionally, in the
posterior equilibrium containing any state v ∈ (va, v∗], the lending cutoff is exactly v,
making the lender indifferent between lending or not in this state. For each subgame
with signal s = vs, the true variable importance is either vs, leading the lender to not
lend, or it is above v∗, prompting the lender to lend to a borrower with data x = 1.
The equilibrium approval probability in this subgame is

1
b
K−1

(
µ

1 − µ

(
vs

I
− 1

))
,
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Figure 4: Optimal Policy. We numerically calculate an example of the optimal
policy. In this exercise, we use the following parameters: µ = 0.35, c̄ = 2, b = 1.7,
I = 1, v̄ = 2.5. Both c and v follow uniform distribution. In this exercise, va = 1.433,
v∗ = 1.757, vb = 2.299. As a benchmark, in this case, vN = 1.581.

which is an increasing function of the signal s = vs.

4.1 Implementation and Examples

We’ve characterized the optimal disclosure policy and will now discuss potential real-
world implementations. In practice, algorithmic transparency can involve disclosures
on human involvement, data, models, and more. Disclosures about data and models,
in particular, have been emphasized in various settings. Although the discussion on
algorithmic transparency is still in its early stages, our model provides insights into
implementations that can improve the payoffs of algorithm users by mitigating data
manipulation.

In the following examples, we illustrate how our optimal policy can be imple-
mented in real-world scenarios. In the context of training data transparency, the
optimal policy can be implemented by disclosing potentially biased training data. In
the context of model disclosure, the optimal policy corresponds to understating the
variable importance in machine learning models.
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Disclosing Samples of Training Data with Added Noise

Suppose the parameter v represents the correlation between a certain variable (e.g.,
phone operating system) and an outcome (e.g., credit quality). While v is unknown to
the public, it is learned by the lender after exploring the training data. Our optimal
policy, as detailed in Proposition 4.3, can be implemented as follows: The lender
commits to releasing the training data to the public, allowing them to estimate the
correlation. If the correlation v in the original training data is below a cutoff v∗,
which means the variable is not very informative, the lender releases the original data
reflecting the true correlation v. If the correlation exceeds v∗, the lender releases the
training data with added white noise, such that the correlation becomes γ (v), which
is lower than v. Intuitively, the lender releases the true training data if the correlation
is low, but a noisier version with a lower correlation γ (v) < v if the true correlation
is high. This approach ensures that when the borrower observes the released training
data, they remain uncertain whether it reflects the true correlation of the original
data or is a noisy version. Our results highlight that committing to strategically
releasing noisier training data may be optimal.

Understating Variable Importance in Machine Learning Models

Variable importance (or feature importance) is a crucial measure in machine learn-
ing models, reflecting a variable’s effectiveness.16 Given its informativeness, variable
importance can also be used to enhance algorithmic transparency. Suppose the pa-
rameter v in our model represents variable importance in a machine learning model
used by the lender. Our model suggests that if the variable importance is below a
threshold v∗, the lender should disclose the true value. However, if it is above the
threshold, the lender should disclose a modified, lower value γ (v). Essentially, the
lender discloses the true variable importance of the machine learning model when it
is low and understates it when it is high. This creates uncertainty for the borrower
about whether the reported variable importance is true or understated, preserving
uncertainty in the posterior belief.

16For example, if for a given model with two input features “f1” and “f2”, the variable im-
portances are {f1 = 5.8, f2 = 2.5}, then the feature “f1” is more “important” to the model than
feature “f2” (source: Google Developers, https://developers.google.com/machine-learning/decision-
forests/variable-importances).
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5 Extensions

5.1 Commitment: Information vs Decision

Our paper focuses on the role of algorithmic disclosure in mitigating gaming behav-
ior, and Remark 3.1 shows that partial disclosure of the algorithm is optimal. The
discussion in Section 3.3 demonstrates that committing to a higher lending cutoff can
also improve the lender’s payoff. In practice, regulating the decision-making process
of algorithm users is also a significant part of the public debate.17 In this section,
we discuss the role of commitment to information (algorithm disclosure) versus com-
mitment to action (lending decisions). We show that even when the lender commits
to the optimal lending decision, she might still receive higher payoff by disclosing
additional information about the predictive model, suggesting that the information
disclosure can not be fully replaced by the lender’s stronger commitment power on
lending decisions.

To begin our analysis, consider a benchmark case of committing to lending actions.
Suppose the lender commits to lending to a borrower with data x = 1 when v ≥ z

and rejecting the borrower with x = 0 directly.18 Then the lender’s problem is:

max
z

∫ v̄

z
[µv − µI − (1 − µ) K (c) I] dG (v) ,

where c is determined by b · (1 − G (z)) = c. Let the solution to this problem be
z∗ = vc, and the borrower’s manipulation cutoff in this case be

cc = b · (1 − G (vc)) .

We are interested in whether some additional disclosure about the state v can help the
lender even if she has full commitment power over lending decisions. After committing
to the optimal lending decision vc, suppose the lender can choose a disclosure policy
(S, σ) and disclose information about the true state accordingly, before the borrower

17For example, Fintech lenders are often required to exclude certain variables from their decision-
making process and may set goals for default rate.

18Note that we can consider a more flexible lending rule. For instance, the lender could lend
to a borrower with data x ∈ {0, 1} when v ≥ vx, allowing the lender to lend to a borrower with
x = 0. This flexibility might improve the lender’s profit by deterring the borrower’s incentive to
manipulate. However, under certain distributional assumptions about K (c), it is optimal for the
lender to commit to always rejecting a borrower with x = 0. This case also allows for a comparable
analysis with our baseline model.
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chooses his manipulation strategy. The following proposition shows that the lender
might receive higher payoff from additional disclosure about the true state v.

Proposition 5.1. Suppose the lender commits to only lending to the borrower with
data x = 1 when the true state v ≥ vc. If the function xK (x) is strictly concave at
x = cc, then the lender can receive a higher payoff by disclosing additional information
about v compared to disclosing nothing.

Although the key friction in our model is the lender’s lack of commitment problem,
Proposition 5.1 suggests that the benefits of algorithmic disclosure cannot simply be
replaced by committing to a lending decision. Instead, the lender can achieve a higher
payoff by disclosing additional information about the predictive model even if she has
full commitment power on lending decisions.

5.2 Costly Verification

In practice, some data manipulation behavior is classified as fraudulent activities (like
misreporting personal information), and lenders can costly verify fraudulent activities
using various methods, which is another way of mitigating data manipulation. In this
extension, we consider how the disclosure policy interacts with costly verification in
the lender’s problem.

We introduce one more assumption to the main model. After a signal s is disclosed
to the market, once the lender receives a loan application from a borrower, she has
the option to verify and reveal the borrower’s true type X by paying a cost t > 0.
As we discussed in the main model, only a borrower with data x = 1 has non-zero
probability of getting the loan, so we just need to consider the lender’s choice of
revealing the true type of a borrower with data x = 1. Consider an subgame with
posterior belief πs, a borrower with X = 0 chooses to manipulate if and only if his
manipulation cost c is lower than a cutoff, denoted as cs. Then in equilibrium, if the
lender verifies the borrower’s type, her profit is

WV = max {µv − µI, 0} − (µ + (1 − µ) K (cs)) t.

If the lender chooses to not verify the borrower’s type, her profit is

WNV = max {µv − µI − (1 − µ) K (cs) I, 0} .

33



When t > (1−µ)K(cs)
µ+(1−µ)K(cs)I, WNV > WV for all v. In this case, the lender will never

verify the borrower’s true type. When t < (1−µ)K(cs)
µ+(1−µ)K(cs)I,

WV > WNV ⇐⇒ v > ve = I + µ + (1 − µ) K (cs)
µ

t,

and the borrower’s type must be verified before he successfully gets the loan. However,
this implies that the borrower will never manipulate his data x, and thus the lender
has no incentive to verify the borrower’s type. Then t < (1−µ)K(cs)

µ+(1−µ)K(cs)I can’t be true
in the equilibrium of any subgame s. Then if in a subgame s, the lender verifies
the borrower’s type with positive probability, we must have t = (1−µ)K(cs)

µ+(1−µ)K(cs)I, and
thus there exists at most one subgame s, such that the verification happens with
positive probability. The following theorem presents the complete characterization of
an optimal policy with verification.

Theorem 5.1. With costly verification, there exists tv such that:

1. When t ≥ tv, the lender will never verify the borrower’s type, and the optimal
disclosure policy is the same as in the main model.

2. When t < tv, there exists vv ∈ (0, v̄], such that the optimal policy can be imple-
mented by two steps:

(a) The lender first discloses if v > vv or not.

(b) If v > vv, then the lender will verify the type of the borrower who has data
x = 1 with probability p∗ = 1 − cv

b
, and lends to the borrower if his type is

not verified or verified to be X = 1.

(c) If v ≤ vv, there is no verification, then information about v is further
disclosed according to a policy (Sv, σv), where (Sv, σv) is an optimal dis-
closure policy characterized in Theorem 4.2 with a modified prior belief
G∗ (v), where

G∗ (v) = min
{

G (v)
G (vv) , 1

}
.

Theorem 5.1 shows that the disclosure policy and verification technology interact
in a simple way: when the true state v is sufficiently high (v > vv), only verifi-
cation is used to disincentivize manipulation behavior, and no further disclosure is
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needed; while when the v is low (v ≤ vv), only disclosure is used to disincentivize the
manipulation behavior and verification is never used.

6 Conclusion

We study the optimal algorithmic disclosure in a lending market where a Fintech
lender uses privately observed predictive models to screen a borrower. The input to
the predictive model is data collected from the borrower, which can be strategically
manipulated. The optimal disclosure features partial disclosure, where information
about the predictive model is partially disclosed to the borrower, differentiating the
posterior lending market equilibrium by data manipulation levels. Under the optimal
disclosure policy, the lender uses borrower data less intensively in her lending deci-
sions, reducing the average data manipulation level and improving efficiency. Despite
receiving additional information from the lender, the borrower’s posterior belief re-
mains quite uncertain. Algorithmic disclosure can improve the lender’s payoff even
when she has additional commitment power on lending decisions or can verify the
borrower’s type at a cost.
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Appendix

A Proofs

A.1 Proofs in Section 2

No Disclosure
Based on the distributional assumptions on the manipulation cost c and the prob-

ability of success v, the two equilibrium conditions are b (1 − vN) = cN and µvNV =
(µ + (1 − µ) cN) I. The unique solution is

(
vN = µI+(1−µ)Ib

µV +(1−µ)Ib
, cN = b · µ(V −I)

µV +(1−µ)Ib

)
.

A Binary Signal
When v ∈ A, let’s verify that in equilibrium v1 = 0.54, c1 = 0.34, and W1 =

0.19. The two equilibrium conditions are Prob (v > v1|A) · b = c1, and µv1V =
(µ + (1 − µ) Prob (c ≤ c1)) I. Since A = [0, 0.54) ∪ (0.64, 0.91), and v1 = 0.54, c1 =
0.34, the first condition becomes 0.91−0.64

0.91−0.64+0.54 × 1 = 0.34, and the second condition
becomes 0.3 × 0.54 × 10 = (0.3 + 0.7 × 0.34) × 3. Both condition hold 19 under
A = [0, 0.54) ∪ (0.64, 0.91), and v1 = 0.54, c1 = 0.34. Similarly, when v ∈ A∁,
the two equilibrium conditions are 1−0.91

1−0.91+0.64−0.54 × 1 = 0.48, and 0.3 × 0.64 × 10 =
(0.3 + 0.7 × 0.48)×3. Both conditions hold under A∁ = [0.54, 0.64]∪[0.91, 1] and v2 =
0.64, c2 = 0.48. Regarding the lender’s profit, W1 = 0.3 × 10 ×

∫ 0.91
0.64 (v − 0.54) dv =

0.019, and W2 = 0.3 × 10 ×
∫ 1

0.91 (v − 0.64) dv = 0.09. So the total profit is Ws =
W1 + W2 = 0.19 + 0.09 = 0.28.

A.2 Proof of γs (1, c) = 0

Suppose in a subgame s, a borrower with type X and manipulation cost c > 0 chooses
γs (1, c) > 0 in equilibrium. For the borrower, his payoff of not manipulating data is
ds (1) · b, while the payoff of manipulating data is ds (0) · b − c. Then he chooses to
manipulate the data only if

ds (0) · b − c ≥ ds (1) · b ⇐⇒ ds (0) − ds (1) >
c

b
.

19Since we just want to illustrate the key ideas, we only keep the first two decimal places of the
results in this example, so the conditions only approximately hold.
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Since γs (1, c) > 0, we must have

ds (0) − ds (1) ≥ c

b
> 0 (18)

in equilibrium. For a borrower with type X = 0 and manipulation cost c1, the
payoff of not manipulating data is ds (0) · b, while the payoff of manipulating his
data is ds (1) · b − c1. Condition (18) implies that ds (1) · b − c1 < ds (0) · b for
any c1, which implies that in this equilibrium, a borrower with type X = 0 never
chooses to manipulate data almost surely. Then for the lender, a borrower with data
x = 1 will always has better quality than a borrower with data x = 0, which means
αs (1, v) ≥ αs (0, v) for any v and s, and thus ds (1) ≥ ds (0). This is a contradiction
to the condition (18). So in any equilibrium s, we must have γs (1, c) = 0 for any
c > 0.

A.3 Proof of Lemma 3.1

We have already shown that γs (1, c) ≡ 0, then the lender’s profit of lending to a
borrower with data x = 0, represented by (3), must be negative or zero. When the
profit is negative, we must have αs (0, v) ≡ 0 for any v and s. When the profit equals
zero, it must be the case that observing a borrower with x = 0 is a zero-probability
event on the equilibrium path. Then without loss of generality, we have αs (0, v) ≡ 0
for any v and s. This implies

ds (0) =
∫ v̄

0
αs (0, v) πsdv = 0.

For a borrower with type X = 0 and manipulation cost c, the optimization problem
(6) implies that he chooses to manipulate his data only if

ds (1) b − c ≥ ds (0) b = 0 ⇐⇒ c ≤ cs = ds (1) b.

When the lender faces to a borrower with data x = 1, if she makes the loan, her
profit (2) becomes µv − [µ + (1 − µ) K (cs)] · I, and she makes the loan (αs (1, v) >

0) only if v ≥ vs = [µ+(1−µ)K(cs)]·I
µ

. Since ds (1) =
∫ v̄

0 αs (1, v) πsdv, we must have
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Prob (v > vs| s) ≤ ds (1) ≤ Prob (v≥vs| s). The lender’s profit in the subgame s is

Ws =
∫ v̄

vs

(µv − [µ + (1 − µ) K (cs)] · I) πs (v) dv

=
∫ v̄

vs

(µv − µvs) πs (v) dv.

A.4 Proof of Proposition 3.1

The lender’s original problem is to find a disclosure policy (S, σ̃), which induces a
distribution of the signal F (s), to maximize the expected profit

W = µ
∫

s∈S
E
[
(v − vs)+ |s

]
dF (s) . (19)

It’s standard in the literature to work with the distribution of posteriors {πs}s∈S

instead of disclosure policies directly (Kamenica and Gentzkow (2011)), but an addi-
tional Bayesian plausibility condition is needed:

∫
s∈S

πsdF (s) = g (v) . (20)

Under each posterior πs, the equilibrium conditions are

Prob (v > vs| s) ≤ ds (1) ≤ Prob (v ≥ vs| s) ,

c ≤ cs = b · ds (1) ,

and
vs = [µ + (1 − µ) K (cs)] · I

µ
.

These conditions jointly imply

Prob (v > vs| s) ≤
K−1

(
µvs

I(1−µ) − µ
1−µ

)
b

≤ Prob (v ≥ vs| s) , (21)

where Prob ( ·| s) is the probability function under the posterior πs. So the lender’s
problem is equivalent to finding a distribution of posteriors, denoted by S and {F, πs},
to maximize (19), subject to conditions (20) and (21).
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A.5 Proof of Lemma 3.2

Consider a policy (S, σ̃) with distribution of posterior beliefs {F, πs}, and suppose
there exist two distinct realizations s1, s2 ∈ S, such that (vs1 , cs1) = (vs2 , cs2). Then
consider a new policy (S ′, σ̃′), where S ′ = {s′

0} ∪ S\ {s1, s2} and

σ̃′ (s|v) = σ̃ (s|v)1S\{s1,s2} (s) + (σ̃ (s1|v) + σ̃ (s2|v))1{s′
0} (s)

for all v ∈ [0, v̄] and s ∈ S ′. Note that

σ̃′ (s|v) = σ̃ (s|v)

for any v ∈ [0, v̄] and s ∈ S\ {s1, s2} = S ′\ {s′
0}. Then for any s ∈ S\ {s1, s2} =

S ′\ {s′
0}, the posterior belief is the same under the two policies, i.e., πs = π′

s. So the
lending market equilibrium is the same for any s ∈ S\ {s1, s2} = S ′\ {s′

0} in these
two policies. Besides, under the signal realization s′

0 in the new disclosure policy, we
can verify that the equilibrium manipulation cutoff cs and lending cutoff vs are all
unchanged by verifying the equilibrium conditions for the subgames s1 and s2 under
the policy (S, σ̃).

A.6 Proof of Lemma 3.3

Given vδ, the borrower’s manipulation cutoff cδ satisfies b (1 − G (vδ)) = cδ. The
lender’s payoff is

Wδ =
∫ v̄

vδ

[µv − (µ + (1 − µ) K (cδ)) I] g (v) dv,

so

dWδ

dδ

∣∣∣∣∣
δ=0

= − [µvN − (µ + (1 − µ) K (cN)) I] g (v)+
∫ v̄

vδ

(
− (1 − µ) Ig (v) dK (cδ)

dδ

∣∣∣∣∣
δ=0

)
dv.

(22)
The equilibrium condition of the no disclosure equilibrium is µvN−(µ + (1 − µ) K (cN)) I =
0. And it’s clear that dK(cδ)

dδ

∣∣∣
δ=0

< 0 because K ′ is always strictly positive. Then we
must have dWδ

dδ

∣∣∣
δ=0

> 0.
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A.7 Proof of Proposition 3.2

In the no disclosure equilibrium, the belief about v is the same as the prior, the
lending market equilibrium is characterized by cN and vN , which satisfy conditions
(8), (9) and (10). Let the lender’s payoff be WN in the no disclosure case. Now let’s
consider the following deterministic disclosure policy (S ′, σ′), where 0 < ϵ1, ϵ2 ≪ 1,
S ′ = {s′

1, s′
2}, and the message function is

σ′ (v) =

s′
1 v ∈ [0, v′

1] ∪ [vN , vN + ϵ1] ∪ [v̄ − ϵ2, v̄]

s′
2 v ∈ (v′

1vN) ∪ (vN + ϵ1, v̄ − ϵ2)
,

where v′
1 < vN satisfies

Prob (v ∈ [vN , vN + ϵ1] ∪ [v̄ − ϵ2, v̄])
Prob (v ∈ [0, v′

1] ∪ [vN , vN + ϵ1] ∪ [v̄ − ϵ2, 1])b = cN .

Denote the equilibria under signals s′
1 and s′

2 as
(
vs′

1
, cs′

1

)
and

(
vs′

2
, cs′

2

)
, respec-

tively, it’s easy to verify

(
vs′

1
, cs′

1

)
=
(
vs′

2
, cs′

2

)
= (vN , cN) .

Then changing to the policy (S ′, σ′) doesn’t change the lender’s payoff, i.e., WN = W ′,
where the lender’s payoff under disclosure policy (S ′, σ′) can be written as

W ′ =Prob (v ∈ [0, v′
1] ∪ [vN , vN + ϵ1] ∪ [v̄ − ϵ2, v̄]) · Es′

1

(µv −
(
µ + (1 − µ) K

(
cs′

1

))
I
)

· 1{
v≥vs′

1

}
+ Prob (v ∈ (v′

1, vN ) ∪ (vN + ϵ1, v̄ − ϵ2)) · Es′
2

(µv −
(
µ + (1 − µ) K

(
cs′

2

))
I
)

· 1{
v≥vs′

2

} .

(23)

Then, let’s construct a new disclosure policy based on (S ′, σ′), and show that
the new disclosure policy increases lender’s payoff. Let’s consider the deterministic
disclosure policy (S ′′, σ′′), with S ′′ = {s′′

1, s′′
2, s′′

3}, and message function

σ′′ (v) =


s′′

1 v ∈ [vN , vN + ϵ1]

s′′
2 v ∈ [0, v′

1] ∪ [v̄ − ϵ2, v̄]

s′′
3 v ∈ (v′

1, vN) ∪ (vN + ϵ1, v̄ − ϵ2)

.
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The signal realization s′′
3 is “equivalent” to the signal realization s′

2 in disclosure policy
(S ′, σ′), both induce the same posterior belief on (v′

1, vN) ∪ (vN + ϵ1, v̄ − ϵ2). When
signal s′′

1 is disclosed, the borrower knows that the true state v ∈ [vN , vN + ϵ1]. In
the no discloure case, the lender’s payoff in state [vN , vN + ϵ1] is close to zero (in
order o (ϵ1)), as vN is the equilibrium cutoff in lending decisions. So the difference
between the lender’s payoff in the subgame s′′

1 under the disclosure policy (S ′′, σ′′),
and the lender’s payoff in the no disclosure case when v ∈ [vN , vN + ϵ1] is close to
zero. However, the increase in lender’s payoff is non-trivial. Note that the approval
probability is lower under s′′

2 compared to the no disclosure case, so the equilibrium
data manipulation level is lower under s′′

2. As what we will show later, this is the
dominating effect, and thus the lender’s payoff increases under the disclosure policy
(S ′′, σ′′). To see this, note that the lender’s payoff under (S ′′, σ′′) is

W ′′ =Prob (v ∈ [vN , vN + ϵ1]) · Es′′
1

(µv −
(
µ + (1 − µ) K

(
cs′′

1

))
I
)

· 1{
v≥vs′′

1

}
+ Prob

(
v ∈

[
0, v′

1
]

∪ [v̄ − ϵ2, v̄]
)

· Es′′
2

(µv −
(
µ + (1 − µ) K

(
cs′′

2

))
I
)

· 1{
v≥vs′′

2

}
+ Prob

(
v ∈

(
v′

1, vN

)
∪ (vN + ϵ1, v̄ − ϵ2)

)
· Es′′

3

(µv −
(
µ + (1 − µ) K

(
cs′′

3

))
I
)

· 1{
v≥vs′′

3

} .

(24)

It’s obvious that the last term in (24) equals the last term in (23), because equilibria
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under signal realizations s′′
3 and s′

2 are the same. Then

W ′′ − W ′

=Prob (v ∈ [vN , vN + ϵ1]) · Es′′
1

(µv −
(
µ + (1 − µ) K

(
cs′′

1

))
I
)

· 1{
v≥vs′′

1

}
+ Prob (v ∈ [0, v′

1] ∪ [v̄ − ϵ2, v̄]) · Es′′
2

(µv −
(
µ + (1 − µ) K

(
cs′′

2

))
I
)

· 1{
v≥vs′′

2

}
− Prob (v ∈ [0, v′

1] ∪ [vN , vN + ϵ1] ∪ [v̄ − ϵ2, v̄]) · Es′
1

(µv −
(
µ + (1 − µ) K

(
cs′

1

))
I
)

· 1{
v≥vs′

1

}
≥Prob (v ∈ [0, v′

1] ∪ [v̄ − ϵ2, v̄]) · Es′′
2

(µv −
(
µ + (1 − µ) K

(
cs′′

2

))
I
)

· 1{
v≥vs′′

2

}
− Prob (v ∈ [0, v′

1] ∪ [vN , vN + ϵ1] ∪ [v̄ − ϵ2, v̄]) · Es′
1

(µv −
(
µ + (1 − µ) K

(
cs′

1

))
I
)

· 1{
v≥vs′

1

} .

Note that vs′
1

= vN , we know

Prob (v ∈ [0, v′
1] ∪ [vN , vN + ϵ1] ∪ [v̄ − ϵ2, v̄]) · Es′

1

(µv −
(
µ + (1 − µ) K

(
cs′

1

))
I
)

· 1{
v≥vs′

1

}
=

Prob (v ∈ [vN , vN + ϵ1]) · E [(µv − (µ + (1 − µ) K (cN )) I) |v ∈ [vN , vN + ϵ1]]
+Prob (v ∈ [v̄ − ϵ2, v̄]) · E [(µv − (µ + (1 − µ) K (cN )) I) |v ∈ [1 − ϵ2, 1]]

.

Then

W ′′ − W ′ ≥
Prob (v ∈ [v̄ − ϵ2, v̄]) ·

[
(1 − µ) I

(
K (cN ) − K

(
cs′′

2

))]
−

Prob (v ∈ [vN , vN + ϵ1]) · E [(µv − (µ + (1 − µ) K (cN )) I) |v ∈ [vN , vN + ϵ1]] .

In the equilibrium of subgame s′′
2,

cs′′
2

= b
Prob (v ∈ [v̄ − ϵ2, v̄])

Prob (v ∈ [0, v′
1] ∪ [v̄ − ϵ2, v̄])

= b
1 − G (v̄ − ϵ2)

1 − G (v̄ − ϵ2) + G (v′
1)

.
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Fix ϵ2, and let ϵ1 → 0, then

cN − cs′′
2

b
= 1 − G (v̄ − ϵ2) + G (vN + ϵ1) − G (vN)

1 − G (v̄ − ϵ2) + G (v′
1) + G (vN + ϵ1) − G (vN) − 1 − G (v̄ − ϵ2)

1 − G (v̄ − ϵ2) + G (v′
1)

= G (v′
1)

[1 − G (v̄ − ϵ2) + G (v′
1)]

2 g (vN) ϵ1 + o (ϵ1) .

Then

W ′′ − W ′

Prob (v ∈ [v̄ − ϵ2, v̄])

≥

[
(1 − µ) I

(
K (cN) − K

(
cs′′

2

))]
−

Prob(v∈[vN ,vN +ϵ1])
Prob(v∈[v̄−ϵ2,v̄]) µ (E (v|v ∈ [vN , vN + ϵ1]) − vN)

≥ (1 − µ) IK ′ (cN) b
G (v′

1)
[1 − G (v̄ − ϵ2) + G (v′

1)]
2 g (vN) ϵ1 + o (ϵ1) − g (vN) ϵ1 + o (ϵ1)

1 − G (v̄ − ϵ2)
µϵ1.

It’s clear that when ϵ1 → 0, W ′′ − W ′ > 0, which means that the no disclosure policy
is dominated by our new disclosure policy (S ′′, σ′′).

A.8 Proof of Lemma 3.4

The full disclosure policy (S, σ) can be implemented by the space S = [0, v̄] and a
deterministic message function σ (v) = v. In this case, the true state v is perfectly
revealed to the borrower. For any signal realization s = v > I, the lending market
equilibrium of subgame s must satisfy vs = v. Then the lender’s payoff must be zero
in this subgame. For any v ≤ I, the lender will never make the loan, and thus her
profit is zero. In summary, the lender’s payoff is always zero for any subgame s ∈ S,
and thus her total payoff must be WF = 0.

A.9 Proof of Lemma 4.1

We prove this result by contradiction. Suppose (S, σ̃) is an optimal policy, with
distribution of posteriors {F, πs}.

First, Assumption 1 implies that in any subgame s, the approval probability ds (x)
must be less than 1. Suppose for a signal s0, Rs0 is an empty set, then we must have
Prob (v = vs0|s0) > 0, and the lender rejects a borrower with data x = 1 only when
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v = vs0 . Rs0 being an empty set means that αs0 (1, vs0) ∈ (0, 1). Then consider an
alternative policy (S1, σ̃1), with S1 = S − {s0} {s1, s2} and posterior belief:

π̃s =


δvs0

if s = s1
(1−αs0(1,vs0))δvs0 +πs01(vs0 ,v̄](v)

1−αs0(1,vs0)·Prob(v=vs0 |s0) if s = s2

πs if s ∈ S − {s0}

.

(S1, σ̃1) represents a simple policy, and it reveals information in the same way as
(S, σ̃), except that if s = s0 is revealed, and if v = vs0 , then with probability
αs0 (1, vs0), the true state vs0 is revealed. We can verify that the lender’s payoff im-
proves under signal s in this case, because the approval probability decreases in the
subgame s, leading to a lower manipulation cutoff and less manipulation. However,
the lender does not lose profit from financing, because she earns zero from financing
the borrower when v = vs. Since the improvement in the lender’s payoff is positive in
this case, the measure of all signals s satisfying Rs being an empty set must be zero.

Second, suppose for a signal s0, As0 is an empty set, then in this case, we must
have supp (πs0) ≤ I, and thus the lender will always reject the borrower. It is obvious
that combing this signal with any other signal will improve the lender’s payoff, as the
manipulation will be less severe on average, and the lender will not lose any profit
from financing. As a result, the measure of the signal s that satisfies As being an
empty set must be zero.

For the last point, we prove the result by contradiction. Note that αs (1, v) ∈ (0, 1)
only if v = vs. Suppose there exists a set H ⊂ S, such that Prob (H) > 0 and for any
s ∈ H, vs ∈ As. Take any s0 ∈ H, if Prob (vs0|s0) = k > 0, and αs0 (1, vs0) ∈ (0, 1),
then following the proof of the first part of this lemma, we can show that there is
an alternative policy that generates higher lender’s payoff for the subgame s0 while
keeping the lender’s payoff unchanged for other states.

If Prob (vs0|s0) = k = 0, since vs0 ∈ As0 then for any ϵ > 0, we must have
Prob (v ∈ (vs0 , vs0 + ϵ) |s0) > 0. Following the proof of Proposition 3.2, we know
there must exist an alternative disclosure policy that reveals the states when v ∈
(vs0 , vs0 + ϵ) for a ϵ being small enough, such that the lender’s payoff improves under
signal s0. We omit the details of the proof for this part as it essentially replicates the
proof of Proposition 3.2.

Then in summary, for any set H satisfying vs ∈ As for all s ∈ H, we must have

47



Prob(H) = 0. Then for almost all s ∈ S, we must have As = {v ∈ supp (πs) |αs (1, v) = 1}.

A.10 Proof of Theorem 4.1

Suppose there exists an optimal disclosure policy (S, σ̃) and it induces the distribution
of posteriors {F, πs}. If S is a singleton, then the policy is just the no disclosure
policy. In this case, let v∗ = vN , then this result is obviously true. If S is not a
singleton, let’s prove the result by contradiction. For any s, let R̄s = sup Rs and
As = inf As. If for all s1, s2 ∈ S, R̄s1 ≤ As2 , then the statement must be true. If
there exist s1 and s2, such that R̄s1 > As2 , by the definition of R̄s and As, there
must exist v1 ∈ Rs1 and v2 ∈ As2 , such that v1 > v2. Since v1 ∈ supp (πs1) and
v2 ∈ supp (πs2), then for any ϵ1 > 0 and ϵ2 > 0, and open balls B (v1, ϵ1), B2 (v2, ϵ2),
we must have Prob (B (v1, ϵ1) |s1) > 0 and Prob (B (v2, ϵ2) |s2) > 0. Let us choose
ϵ1, ϵ2 < v2−v1

3 , then inf B (v1, ϵ1) > sup B2 (v2, ϵ2). Denote Prob (B (v1, ϵ1) |s1) =
K1 > 0 and Prob (B (v2, ϵ2) |s2) = K2 > 0. If f (s1) K1 ≥ f (s2) K2,20 let’s consider
the following distribution of posteriors:

{
F̂ , π̂s

}
, where Ŝ = S, F̂ = F , and

π̂s =


πs1 + f(s2)

f(s1)πs21B(v2,ϵ2) (v) − f(s2)K2
f(s1)K1

πs11B(v1,ϵ1) (v) if s = s1,

πs2 − πs21B(v2,ϵ2) (v) + K2
K1

πs11B(v1,ϵ1) (v) if s = s2,

πs o.w.

We can check that
{
F̂ , π̂s

}
is Bayes-plausible, and thus there exists a disclosure

policy
(
Ŝ, σ̂

)
that induces this distribution of posteriors. But now in the new policy(

Ŝ, σ̂
)
, v2 /∈ supp (πs2). And the lender’s payoff is higher under the new policy

(
Ŝ, σ̂

)
because: 1. F̂ = F for all s ∈ Ŝ = S; 2. the lending market equilibrium (vs, cs) is
the same under the two policies for any s ∈ S = Ŝ; 3. the lender’s payoff under
any signal realization except for s2 is unchanged; 4. the lender’s payoff under signal
realization s2 increases. The last point holds because with the new disclosure policy(
Ŝ, σ̂

)
, under s2, the equilibrium variables (vs2 , cs2) is unchanged compared to that

with policy (S, σ̃), so the total financing cost is unchanged. But the total payoff
generated from the project increases by

f (s2) · K2 · [E [µv|s1, B (v1, ϵ1)] − E [µv|s2, B (v2, ϵ2)]] .

20The other case when f (s1) K1 < f (s2) K2 can be proved using the same proof strategy.
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Since inf B (v1, ϵ1) > sup B2 (v2, ϵ2), the term E [µv|s1, B (v1, ϵ1)]−E [µv|s2, B (v2, ϵ2)]
is strictly positive. Since we assume that the policy (S, σ̃) is optimal, then it must
be the case that after removing a zero-measure set (denoted as Q) in S, we can’t find
any s1 and s2 such that R̄s1 > As2 (otherwise the lender’s payoff can be improved).
This implies that, for all s1, s2 ∈ S − Q, we must have R̄s1 ≤ As2 . Then there must
exist a cutoff v∗, such that R̄s ≤ v∗ ≤ As for all s ∈ S − Q. Since Q is a zero-measure
set, the statement of the theorem must be true.

A.11 Proof of Proposition 4.1

We establish the following lemma first.

Lemma A.1. For any optimal disclosure policy (S, σ̃), there must exist a determin-
istic optimal policy (S, σ) with the same signal space S. Besides, let

{
F̃ , π̃s

}
and

{F, πs} be the distributions of posteriors for policies (S, σ̃) and (S, σ), respectively,
and let (ṽs, c̃s) and (vs, cs) be equilibrium outcomes under policies (S, σ̃) and (S, σ),
respectively. Then the following properties hold:

1. F = F̃ and (ṽs, c̃s) = (vs, cs) for almost all s, and the ex ante lending cutoffs
defined in Theorem 4.1 are the same under these two policies, denoted as v∗.

2. For all s ∈ S, both As and Rs are non-empty intervals, where As and Rs are
defined in (16) and (17).

3. For all s1, s2 ∈ S with cs1 < cs2, we have

sup Rs1 ≤ inf Rs2 (25)

and
sup As1 ≤ inf As2 . (26)

Proof. For the optimal disclosure policy (S, σ̃), if S is a singleton, this lemma is
obviously true. If S is not a singleton, there must exist two different signal realizations
s1 and s2 in (S, σ̃), with marginal probabilities f̃ (s1) and f̃ (s2), respectively. Based
on Lemma 4.1, we just need to consider the case when all of As1 , As2 , Rs1 and
Rs2 are non-empty. For simplicity, let’s assume that both f̃ (s1) and f̃ (s2) represent
probability densities and are positive, the proof for other cases (when f̃ (s1) and f̃ (s2)
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are probabilities but not densities) are basically the same. Denote the lending market
outcomes as (ṽs1 , c̃s1) and (ṽs2 , c̃s2) under these two signal realizations. Without loss
of generality, let’s assume ṽs1 < ṽs2 . Denote the ex ante lending cutoff as v∗ in this
case. Suppose for s1, s2, the condition

sup As1 ≤ inf As2 . (27)

is not satisfied, let B = [inf As2 , sup As1 ]. Then there must exist two non-negative
functions w1, w2, such that

f̃ (s1) w1 (v) + f̃ (s2) w2 (v) = f̃ (s1) π̃s1 · 1B (v) + f̃ (s2) π̃s2 · 1B (v) , (28)

sup {supp (w1 (v)) ∩ (v∗, v̄]} ≤ inf {supp (w2 (v)) ∩ (v∗, v̄]}

and ∫ v̄

0
w1 (v) dv =

∫ v̄

0
π̃s1 · 1B (v) dv. (29)

Now let’s consider the following distribution of posterior beliefs with signal space
S, denoted as {F, πs}, where F = F̃ and

πs =


π̃s1 − π̃s1 · 1B (v) + w1 (v) if s = s1

π̃s2 − π̃s21B (v) + w2 (v) if s = s2

π̃s o.w.

.

We can check that the new distribution of posteriors {F, πs} is still Bayes-plausible,
because ∫ v̄

0
w1 (v) dv =

∫ v̄

0
π̃s1 · 1B (v) dv

and ∫ v̄

0
w2 (v) dv =

∫ v̄

0
π̃s2 · 1B (v) dv.

The second condition is a direct result of (28) and (29). Then the distribution of
posteriors {F, πs} can be induced by a disclosure policy (S, σ). Now the condition
(27) is not violated anymore in the new policy. Then we just need to show that the
lender’s payoff is unchanged under the new policy, and thus it is still optimal. To see
this, with policy (S, σ̃), we know under posterior belief π̃s1 , the approval probability
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is
ds1 (1) = c̃s1

b
.

Note that since ṽs1 < ṽs2 , we know

inf As2 ≥ ṽs2 > ṽs1 .

Then for any v ∈ B, we must have v > ṽs1 . Then under posterior belief πs1 , the
approval probability is still

ds1 (1) −
∫ v̄

0
π̃s1 · 1B (v) dv +

∫ v̄

0
w1 (v) dv = ds1 (1) = c̃s1

b
.

Based on this, we can check that all other equilibrium conditions are also satisfied,
and this implies (vs1 , cs1) = (ṽs1 , c̃s1). Similarly, we can check (vs2 , cs2) = (ṽs2 , c̃s2).
For all other s ∈ S\ {s1, s2}, it’s obvious that the lending market equilibria are all
the same under these two disclosure policies. Then the lender’s payoff is the same
under those two policies. We can continue to “modify” the disclosure policy in the
above way such that the condition (27) is no longer violated.

The proof strategy still works if condition (29) is not satisfied in the optimal
policy (S, σ). Besides, note that the third property in Lemma A.1 implies the second
property in Lemma A.1, and these two jointly imply that the disclosure policy must
be deterministic. Since all the posterior lending market equilibira are the same, the
ex ante lending cutoff v∗ must be unchanged.

Now we prove this result by contradiction. Suppose (S, σ̃) is an optimal policy,
and (S, σ) is the deterministic policy satisfies the properties in Lemma A.1 which
generates the same payoff for the lender. Let As and Rs be the acceptance region and
rejection region for each s under the policy (S, σ). Lemma A.1 implies that both As

and Rs are non-empty intervals.
Suppose there exists a set Ω ⊂ S, such that Prob (Ω) > 0 , and vs > v∗ for

all s ∈ Ω. Our goal is to find another deterministic policy, (S1, σ1), such that the
lender’s payoff is strictly higher under (S1, σ1) compared to (S, σ). Consider any
signal realization sm ∈ Ω. First, Lemma 4.1 implies that sup As = v1 > vsm . Since
Lemma A.1 shows that As must be an interval, we consider the following two cases.

If (vsm , v1) ⊂ As, then the lender can improve her payoff from the signal sm

by disclosing additional information. Specifically, following the proof strategy in
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Proposition 3.2, after signal sm is realized, the lender can strictly improve her payoff
by disclosing whether the true state belongs to (vsm , vsm + ϵ) or not, for a sufficiently
small but positive ϵ.

If (vsm , v1) ⊂ As is not satisfied, there must exist an interval (vsm , vsm + ϵm), such
that (vsm , vsm + ϵm)∩supp (πs) = ∅. We can choose a sufficiently small but positive ϵm,
such that under the prior belief, Prob (v ∈ (vsm , vsm + ϵm)) < Prob (v ∈ [vsm + ϵm, v̄] ∩ supp (πs)).
Then we can find an interval B ⊂ [vsm + ϵm, v̄] ∩ supp (πs), and a continuous, one-
to-one mapping z : (vsm , vsm + ϵm) → B, with z′ (v) = g(v)

g(z(v)) . This implies that
Prob (v ∈ (vsm , vsm + ϵm)) = Prob (v ∈ B). Now let’s consider the following deter-
ministic disclosure policy (S, σ′) with

σ′ (v) =


σ (v) if v /∈ B ∪ (vsm , vsm + ϵm)

σ (z (v)) if v ∈ (vsm , vsm + ϵm)

σ (z−1 (v)) if v ∈ B

.

It’s easy to check that all lending market equilibria are unchanged for all signal
realizations under the new policy (S, σ′), and thus the lender’s payoff is the same
under (S, σ) and (S, σ′). However, under the new disclosure policy (S, σ′), for the
signal realization sm, we have (vsm , vsm + ϵm) ⊂ supp (πsm). As we discussed earlier,
following the proof in Proposition 3.2, the lender can strictly improve her payoff by
disclosing whether the true state belongs to (vsm , vsm + ϵ) for not, for a sufficiently
small but positive ϵ.

We can apply the above operation to all signal realizations s ∈ Ω. Since Ω has
a positive measure, the improvement is lender’s expected payoff is strictly positive,
then the policy (S, σ) must be suboptimal. Since (S, σ̃) generates the same payoff as
(S, σ), it must also be suboptimal, a contradiction.

A.12 Proof of Proposition 4.2

Let’s first introduce the following lemma to establish our results.

Lemma A.2. For any two posterior beliefs πs1 and πs2, with positive probabilities
(densities) f (s1) and f (s2), and lending market equilibira (vs1 , cs1) and (vs2 , cs2) sat-
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isfying vs1 < vs2. Let ŝ be the “combined”signal with posterior belief

π (v|ŝ) = f (s1) πs1 + f (s2) πs2

f (s1) + f (s2)
,

then the lending market equilibrium (vŝ, cŝ) satisfies

vs1 < vŝ < vs2

and
cs1 < cŝ < cs2 .

Proof. If cs1 = 0, the result is obviously true. When cs1 > 0, first, it’s impossible to
have vŝ ≤ vs1 . Note that for the equilibria under s1 and s2, the equilibrium conditions
are µvs1 = [µ + (1 − µ) K (cs1)] I and µvs2 = [µ + (1 − µ) K (cs2)] I. For ŝ, we have
µvŝ = [µ + (1 − µ) K (cŝ)] I. If vŝ ≤ vs1 , then we must have cŝ ≤ cs1 . In equilibrium,

Prob (v > vŝ|ŝ) ≤ cŝ

b
≤ Prob (v ≥ vŝ|ŝ) ,

where

Prob (v > vŝ|ŝ) = f (s1)
f (s1) + f (s2)

Prob (v > vŝ|s1) + f (s2)
f (s1) + f (s2)

Prob (v > vŝ|s2)

and

Prob (v ≥ vŝ|ŝ) = f (s1)
f (s1) + f (s2)

Prob (v ≥ vŝ|s1) + f (s2)
f (s1) + f (s2)

Prob (v ≥ vŝ|s2) .

If vŝ ≤ vs1 < vs2 , we must have Prob (v > vŝ|s1) ≥ cs1
b

, and Prob (v > vŝ|s2) ≥ cs2
b

>
cs1
b

. Then we must have

Prob (v > vŝ|ŝ) >
f (s1)

f (s1) + f (s2)
cs1

b
+ f (s2)

f (s1) + f (s2)
cs1

b
,

which implies cŝ > cs1 , a contradiction! The same proof strategy works for the case
vŝ ≥ vs2 . So the equilibrium must satisfy vs1 < vŝ < vs2 .

Note that the signal in the no disclosure policy is a “combined” signal of all signals
in the optimal policy (S, σ), Lemma A.2 implies that there exist sets A, B ⊂ S with
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positive measures, such that vN < vs for all s ∈ A and vN > vs for all s ∈ B. Then
we must have vN > infs∈S vs. Together with Proposition 4.1, we can also conclude
that v∗ > vN .

A.13 Proof of Lemma 4.2

This is an obvious result of Lemma A.1.

A.14 Proof of Theorem 4.2

The first point has been proved by Lemma 3.2. The second point has been proved by
Theorem 4.1, Lemma A.1 and Lemma 4.1.

A.15 Proof of Theorem 4.3

Suppose (S, σ) is an optimal policy that has the structure characterized in Theorem
4.2. It induces the distribution of posteriors {F, πs}, The probability (density) for
each signal s is denoted as f (s). We want to show that with Assumption 2, we can
weakly improve it such that it has the structure characterized in Theorem 4.3. Let’s
choose any v3 ∈ (0, I), and S1 = {σ (v) |v ∈ [0, v3]}. First, we want to show that the
lender obtains weakly higher profit by pooling all signals in S1 together. Under the
policy (S, σ), the lender’s payoff from signals s ∈ S1 is:

W̃1 =
∫

s∈S1
f (s) · E

[
(µv − (µ + (1 − µ) K (cs)) I)+ |s

]
ds

=
∫

s∈S1
f (s) · µE (αs (1, v) (v − I) |s) ds−∫

s∈S1
f (s) · ds (1) · (1 − µ) K (cs) Ids

=
∫

s∈S1
f (s) · µE

(
1[v∗,v̄] (v) (v − I) |s

)
ds −

∫
s∈S1

f (s) · cs

b
· (1 − µ) K (cs) Ids.

Here we use the equilibrium condition ds (1) = cs

b
in the last equality. Note that∫

s∈S1
f (s) · cs

b
· ds =

∫
s∈S1

f (s) · ds (1) · ds. Theorem 4.1 implies that
∫

s∈S1
f (s) · ds (1) ·

ds = Prob (v ≥ v∗&s ∈ S1).
Let c0 be the solution of(∫

s∈S1
f (s) · ds

)
c0

b
= Prob (v ≥ v∗&s ∈ S1) =

∫
s∈S1

f (s) · cs

B
· ds,

it’s clear that c0 is just the manipulation cutoff in the equilibrium when we pool all
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signals in S1 together. Lemma A.2 implies that c0 < sups∈S1 cs , and the equilibrium
lending cutoff v0 in this case also satisfies v0 < maxs∈S1 vs < v∗. Since function xK (x)
is convex on x ∈ [0, c̄], we must have

(∫
s∈S1

f (s) · ds
)

(1 − µ) c0

b
K (c0) ≤

∫
s∈S1

f (s) · cs

B
· (1 − µ) K (cs) ds. (30)

The lender’s payoff from all the pooling signal is:

W̃2 =
∫

s∈S1
f (s) · E

[
(µv − (µ + (1 − µ) K (c0)) I)+

]
ds

=
∫

s∈S1
f (s) · µE

(
1[v∗,v̄] (v) (v − I) |s

)
ds−∫

s∈S1
f (s) · ds (1) · (1 − µ) K (c0) Ids

=
∫

s∈S1
f (s) · µE

(
1[v∗,v̄] (v) (v − I) |s

)
ds −

∫
s∈S1

f (s) · c0
b

· (1 − µ) K (c0) Ids.

Condition (30) implies that W̃2 ≥ W̃1, then the policy (S, σ) can be weakly improved
if we pool all signals in S1 together. Then we can find an optimal policy that has
the following structure: there exists a cutoff v4 ∈ (0, v∗), such that σ (v) = σ (0) for
all v ≤ v4, and σ (v) > σ (v4) for all v > v4. v4 ̸= v∗ because we’ve already showed
that the no disclosure policy is suboptimal. Let s0 = σ (0), As0 and Rs0 represent the
acceptance region and rejection region under signal s0.

Then we show that we can weakly improve the optimal policy further, which has
the structure characterized in Theorem 4.3. Since we choose the equilibrium cutoff vs

as the message function, we can use vσ(v) to represent the equilibrium lending cutoff
of the equilibrium whose support contains v. The next step is to show that we must
have inf supp πσ(v) = vσ(v) for all v > v4. For the sake of contradiction, suppose there
exists v1 > v4, and inf supp πσ(v1) < vσ(v1). Let s1 = σ (v1), and let the probability
of the signal s1 be f (s1). For the rest of the proof, we consider the case when f (s1)
represents a positive probability. For the case when s1 represents a positive density,
the proof is basically the same. Then there must exist a set E11 ⊂ supp (πs1), such
that sup E11 < vs1 . Let E12 = Rs1 − E11, where Rs1 is the rejection region under
signal s1. We can find sets F11 and F12 satisfying F11 ∩ F12 = ∅, F11 ∪ F12 = As1 ,
where As1 is the acceptance region under equilibrium s1, and

Prob (v ∈ F11)
Prob (v ∈ E11) + Prob (v ∈ F11)

= cs1

b
.

55



Similarly, we can find sets E01, E02, F01 and F02 which are mutually exclusive, and
satisfy E01 ∪ E02 = Rs0 , Y01 ∪ Y02 = As0 , sup E01 < I (< v∗), and

Prob (v ∈ F01)
Prob (v ∈ E01) + Prob (v ∈ F01)

= cs0

b
.

Let ϵ = min {I − sup E01, vs1 − sup E11}. Consider the following alternative disclo-
sure policy with signal space S1 = (S\ {s0, s1}) ∪ {s01, s02} ∪ {s11, s12} and a message
function:

σ1 (v) =



σ (v) if v /∈ {supp {πs1} ∪ supp (πs0)}

s01 if v ∈ E01 ∪ F01

s02 if v ∈ E02 ∪ F02

s11 if v ∈ E11 ∪ F11

s12 if v ∈ E12 ∪ F12

.

It’s clear that the lender’s payoff under (S1, σ1) is the same as that under (S, σ). In
particular, the lender’s lending decision and borrower’s manipulation decision are the
same under signal s01, s02 and s0 (s11, s12 and s1).

Since xK (x) is convex, for any δ, there must exist positive numbers c0, c1, p0 and
p1, that satisfy c0 ∈ (cs0 , cs0 + δ) , c1 ∈ (cs1 − δ, cs1) and p1 + p0 = f (s01) + f (s11),
such that

p1c1 + p0c0 = f (s01) cs0 + f (s11) cs1 ,

and
p1c1K (c1) + p0c0K (c0) ≤ f (s0) cs0K (cs0) + f (s1) cs1K (cs1) . (31)

We can choose δ being small enough, such that v1 = µ+(1−µ)K(c1)
µ

I > sup E11 and
v0 = µ+(1−µ)K(c0)

µ
I < v∗.

xK (x) being convex and vs1 > vs0 imply that p1 < f (s11) and p0 > f (s01). Then
we must be able to find a set D ⊂ Y11, such that

Prob (D) = f (s11) − p1.

Consider the following disclosure policy with signal space Ŝ1 = (S\ {s0, s1})∪{ŝ01, s02}∪
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{ŝ11, s12} and a message function:

σ̂1 (v) =



σ (v) if v /∈ {supp {πs1} ∪ supp (πs0)}

ŝ01 if v ∈ E01 ∪ F01 ∪ D

s02 if v ∈ E02 ∪ F02

ŝ11 if v ∈ E11 ∪ F11 − D

s12 if v ∈ E12 ∪ F12

.

It’s clear the only differences between (S1, σ1) and
(
Ŝ1, σ̂1

)
are the signals s01 and

s11 in (S1, σ1) and ŝ01 and ŝ11 in
(
Ŝ1, σ̂1

)
. Since (S1, σ1) generates the same lender’s

payoff as (S, σ), to compare the lender’s payoff under (S, σ) and
(
Ŝ1, σ̂1

)
, we just

need to compute the difference between lender’s payoff under ŝ01 and ŝ11 in
(
Ŝ1, σ̂1

)
and lender’s payoff under s01 and s11 in (S1, σ1). The lender’s payoff under s01 in
(S1, σ1) is

W01 = Prob (v ∈ F01) µE (v − I|v ∈ F01) − Prob (v ∈ F01) (1 − µ) K (cs0) I

= Prob (v ∈ F01) µE (v − I|v ∈ F01) − f (s01)
cs0

b
(1 − µ) K (cs0) I.

The lender’s payoff under s11 in (S1, σ1) is

W11 = Prob (v ∈ F11) µE (v − I|v ∈ F11) − Prob (v ∈ F11) (1 − µ) K (cs0) I

= Prob (v ∈ F11) µE (v − I|v ∈ F11) − f (s11)
cs1

b
(1 − µ) K (cs1) I.

The lender’s payoff under ŝ01 in
(
Ŝ1, σ̂1

)
is

Ŵ01 = Prob (v ∈ F01 ∪ D) µE (v − I|v ∈ F01 ∪ D) − Prob (v ∈ F01 ∪ D) (1 − µ) K (c0) I

= Prob (v ∈ F01 ∪ D) µE (v − I|v ∈ F01 ∪ D) − p0
c0

b
(1 − µ) K (c0) I.

The lender’s payoff under ŝ11 in
(
Ŝ1, σ̂1

)
is

57



Ŵ11 = Prob (v ∈ F11 − D) µE (v − I|v ∈ F11 − D) − Prob (v ∈ F11 − D) (1 − µ) K (c1) I

= Prob (v ∈ F11 − D) µE (v − I|v ∈ F11 − D) − p1
c1

b
(1 − µ) K (c1) I.

Then the difference is

Ŵ01 + Ŵ11 − W01 − W11

= (1 − µ) I
[
f (s01)

cs0

b
K (cs0) + f (s11)

cs1

b
K (cs1) − p0

c0

b
K (c0) − p1

c1

b
K (c1)

]
≥0.

The first equality is because the lender actually approves the project in the same
states under these two policies, and this is ganrateeed by condition v1 > sup E11 and
v0 < v∗. And the last inequality is because condition (31).

The above analysis shows that we can weakly improve the lender’s payoff if there
exists v1 > v4 such that inf supp πσ(v1) < vσ(v1). We can repeat the modification we’ve
done above until this never happens in the disclosure policy. Then our optimal policy
has the following structure: there exists v4 ∈ (0, v∗), such that σ (v) is constant when
v ≤ v4. For all v > v4, vσ(v) = σ (v) = inf supp πσ(v) which is an increasing function.
For the signal s0 = σ (0), since the lending cutoff satisfies vs0 ≥ v4, and we know that
limv→v+

4
σ (v) = v4, the message function must be continuous at v4.

A.16 Proof of Proposition 4.3

We consider a deterministic optimal policy (S, σ) such that function σ (v) has the
structure in Theorem 4.3 when v ≤ v∗. When v > v∗, let’s consider the following
function form of σ on v ∈ (v∗, v̄]:

σ (v) =

va v ∈ (v∗, vb]

γ (v) v ∈ (vb, v̄]
,

where γ (v) is to be solved, and satisfies γ (vb) = va, γ (v̄) = v∗. For any v ∈ (vb, v̄),
the signal realization is σ (v) = γ (v), and σ (v) = γs is the equilibrium lending cutoff
of the subgame that contains state v. The lender is indifferent between lending or
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not when observing γ (v) = σ (v). Then the lender’s equilibrium condition is

µγ (v) = [µ + (1 − µ) K (cs)] I, (32)

where cs satisfies

cs

b
= Prob (v > v∗|s) = g (v)

g (γ (v)) γ′ (v) + g (v) .

Then the equilibrium condition (32) becomes

µγ (v) =
[
µ + (1 − µ) K

(
bg (v)

g (γ (v)) γ′ (v) + g (v)

)]
I.

This is the differential equation in the proposition. When observing s = va, the
equilibrium condition is µva = [µ + (1 − µ) K (cva)] I, where

cva

b
= G (vb) − G (v∗)

G (vb) − G (v∗) + G (va) . (33)

When the signal realization is s = limv→v+
a

= v+
a , the equilibrium condition is µv+

a =[
µ + (1 − µ) K

(
cv+

a

)]
I, where

cv+
a

b
= g (vb)

g (va) γ′ (vb) + g (vb)
. (34)

cv+
a

= cvabecause of the continuity, then condition (33) and (34) imply that G(vb)−G(v∗)
G(va) =

g(vb)
g(va)γ′(vb) .

A.17 Proof of Proposition 5.1

Under the optimal commitment solution, the lender’s payoff is

Wc =
∫ v̄

vc

[µv − µI − (1 − µ) K (cc) I] dG (v)

=
∫ v̄

vc

(µv − µI) dG (v) − (1 − µ) IK (cc) [1 − G (vc)] ,
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where cc is determined by b (1 − G (vc)) = cc. Then

Wc =
∫ v̄

vc

(µv − µI) dG (v) − (1 − µ) I

b
K (cc) cc.

For any constant ϵ > 0 that is small enough, we can find two cutoffs v1 (ϵ) > 0
and v2 (ϵ) > vc that satisfy max {v1, v2 − vc} < ϵ,

1 − G (v2)
G (vc) − G (v1) + 1 − G (v2)

b = c2 > cc,

G (v2) − G (vc)
G (v1) + G (v2) − G (vc)

b = c1 < cc,

and v1 < I < vc < v2 < v̄. Let

p1 = G (v1) + G (v2) − G (vc) ,

and
p2 = G (vc) − G (v1) + 1 − G (v2) ,

then we can verify that p1 + p2 = 1, p1, p2 > 0 and

p1c1 + p2c2 = b (1 − G (vc)) = cc.

Consider the following policy with a binary signal space S = {s1, s2}. s1 is revealed
if the true state is in the set [0, v1] ∪ [vc, v2], and s2 is revealed if the true state is in
the set (v1, vc)∪ (v2, v̄]. And the lender commits to lending to the borrower if the true
state is above vc, irrespective of the signal realizations. Then under this policy, it’s
easy to verify that Prob (s1) = p1 and Prob (s2) = p2. Under signal s1, in equilibrium,
the lender approves the loan if and only if v ∈ [vc, v2], and under signal s2, the lender
approves the loan if and only if v ∈ (v2, v̄]. The lender’s expected payoff under this
alternative disclosure policy is

W1 =
∫ v̄

vc

[µv − µI] dG (v) − (1 − µ) I

b
[p1K (c1) c1 + p2K (c2) c2] .

Since p1c1 + p2c2 = cc, and function xK (x) is strictly concave at cc, we can choose
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ϵ > 0 that is small enough, such that

p1K (c1) c1 + p2K (c2) c2 < ccK (cc) ,

and thus W0 < W1. So in this case, even the lender commits to an optimal lending
cutoff vc, she can still receive higher payoff by disclosure.

A.18 Proof of Theorem 5.1

Suppose the disclosure policy is (S, σ̃). First, it’s obvious that when the verification
cost t is sufficiently high, the verification technology will never be used. In our
analysis, we already show that in any equilibrium s such that the verification is
used, the data manipulation cutoff cv is uniquely pinned down by t = (1−µ)K(cv)

µ+(1−µ)K(cv)I.
And the lending market equilibrium is also uniquely pinned down. Then there is
at most one signal s under which verification is used. Suppose under sv ∈ S, there
is verification used in equilibrium, and Prob (sv) > 0. Let vv be the solution of
µvv = [µ + (1 − µ) K (cv)] I. Then we can weakly improve the lender’s payoff if
supp (πsv)∩[0, vv] ̸= ∅. To see this, suppose supp (πsv)∩[0, vv] = B, and Prob (B|sv) >

0. It’s clear that the lender will never lend to the borrower if v ∈ B in equilibrium
sv. Then let’s consider a new disclosure policy which keeps everything unchanged
except disclosing whether the true state v ∈ B or not if the signal realization is sv

in the previous policy. It’s clear that if the true state v ∈ B, the lender’s payoff
from these states is zero under the old policy, and is non-negative under the new
policy, so it weakly improves. The lender’s payoff from other states are unchanged,
because the lender is always indifferent between verifying borrower type or not under
this equilibrium sv, and thus the lender’s payoff will be unchanged from these states.
Then the lender’s payoff weakly increases under the new policy.

So the lender will reveals whether the state v is above vv or not, and if v > vv,
the lender will verify the borrower type with positive probability. The borrower’s
equilibrium condition implies that the probability p∗ satisfies

b(1 − p∗) = cv,

which is p∗ = 1 − cv

b
. When v ≤ vv is revealed, the lender will not verify the borrower

type, and in this case, our Theorem 4.2 shows that the lender can maximize her
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profit by disclosing information optimally in the way characterized by the Theorem
4.2, while the only difference being the prior becoming G∗ (v) = min

{
G(v)
G(vv) , 1

}
.

The last part of the proof is to show that for any cost tx, if when t = tx, verification
is used with positive probability under the optimal disclosure policy, then verification
will always be used under optimal policy for any t < tx. This result is straightforward.
Suppose WNV is the lender’s payoff when there is no verification technology available,
and WV (t) is lender’s payoff when verification is available and the cost parameter is
t. It’s obvious that WV (t) is decreasing in t, so if WV (tx) > WNV , we must have
WV (t) > WNV for any t < tx. This means that when t is below a threshold (denoted
as tv), verification will always be used under the optimal policy.
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